PHYSIOLOGY AND MODULATION FACTORS OF OVULATION IN RABBIT REPRODUCTION MANAGEMENT

*Dept. of Agricultural, Food and Environmental Science, University of Perugia, Borgo 20 Giugno 74, 06123, Perugia, Italy.
2Dept. Veterinary Medicine, University of Perugia, via San Costanzo, 4, 06126, Perugia, Italy.
3Dept. of Animal Production, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
4Dept. of Physiology, Veterinary Faculty, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
5Dept. of Agrarian Production. Agronomic, Alimentary and Biosystems, Polytechnic University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

*Corresponding author: simona.mattioli@hotmail.it

ABSTRACT

Rabbit is an induced ovulatory species, so ovulation takes place after mating. Traditionally, exogenous and synthetic hormonal factors (administered by intramuscular and intravaginal via) such as GnRH and analogues, or different physical procedures (i.e. stimulation by intravaginal cannula) have been used to induce ovulation in females when artificial insemination is applied in rabbit farms. Restriction and public rejection in the use of hormones is leading to the study of the seminal plasma components with potential action on ovulation induction. The objective of the present review is to collect and summarize the strategies used, during the last years, to trigger ovulation and improve rabbit fertility management with respect to more animal-friendly manipulation methods. Furthermore, special attention has been paid to the use of a semen component (as endogen molecule) such as beta nerve growth factor (β-NGF) in male and female rabbit reproductive physiology. This neurotrophin and their receptors (TrKA and p75NTR) are abundantly distributed in both male and female rabbit reproductive tract, and it seems to have an important physiological role in sperm maturation and behaviour (velocity, apoptosis and capacitation), as well as a modulatory factor of ovulation. Endogen β-NGF is diluted in the seminal doses with the extenders; hence it could be considered an innovative and alternative strategy to avoid the current hormonal exogenous (by intramuscular route) and stressful treatments used in ovulation induction. Their addition in seminal dose could be more physiological and improve animal welfare in rabbit farms.

Key words: Rabbit, ovulation, seminal plasma, β-NGF, GnRH, reproduction.

INTRODUCTION

In the last 30 years, the average productivity of rabbit farms has increased and become more homogeneous through the use of good management practices, such as the artificial insemination (AI; Rebollar et al., 1994; Castellini, 1996). The optimization of reproductive performance is one of the main facts that assure high productivity on rabbit farms; however, some managements can cause several problems related to the welfare of does such as intensive reproductive rhythms, high mortality and sub-fertility (Cardinali et al., 2008; Castellini et al., 2010). This requires that the new management practices in rabbitries take into account the physiology, reproductive behaviour and welfare of animals.

Considering that using the AI procedure did not provoke LH peak like stimulation by coitus, exogen gonadotropin-releasing hormone (GnRH) or its analogues, such as Lecirelin (Dal Bosco et al., 2014) and Buserelin (Rebollar et al., 2012; Viudes-de-Castro et al., 2014) must be administered intramuscularly or intravaginally to the rabbit does. Nowadays, the most disseminate practice for ovulation induction in
rabbit commercial farms is the intramuscular injection of GnRH analogues. However, this practice is considered an additional stressful situation for the animal and a further work for the farm operators, then it seems not well accepted from the general public (due to the issue animal welfare-related). Furthermore, the use of any exogenous hormones did not meet a good people's consent.

In this context, recent studies demonstrated the presence of an endogenous molecule contained in the seminal plasma (SP) of numerous animal species that produce ovulation in camelids. Specifically, this molecule, whose identity was not initially known, has been called for many years ovulation-inducing factor (OIF) and only in 2014, biochemical studies identified it as the beta nerve growth factor (β-NGF; Ratto et al., 2014). In fact, this protein was firstly identified in the SP of Bactrian camels (Chen et al., 1985), and later in the SP of other induced ovulatory animals, such as rabbits (Silva et al., 2011), koalas (Johnston et al., 2004), alpacas, llamas and other camelids (Silva et al., 2014; Ulloa-Leal et al., 2014; Berland et al., 2016; El Allali et al., 2017; Silva et al., 2020), and even in the SP of species with spontaneous ovulation, such as cattle, pigs, and horses (Adams et al., 2016).

In the light of these reports, the objective of the present review is to collect and summarize the main strategies used to modulate the physiology of ovulation with the aim to improve rabbit fertility using animal-friendly manipulation methods: i.e. use of endogenous β-NGF. The action mechanism of β-NGF in female and male has also been discussed. The development of innovative molecular biology techniques in the live system and the increasing attention of rabbit production actors (farm rabbit employers, consumers, genetic centers, etc.) to the respect of animal welfare (Directive 2010/63/EU) favour the developments of a “more precision management” and “less impactful strategies” to improve the rabbit’s reproduction performances.

PHYSIOLOGY OF OVULATION: A BRIEF UPDATE

Rabbit is an induced (reflex) ovulatory species. Conversely to the spontaneous ovulatory (human, dog, cow, etc.) which display a defined oestrous cycle, rabbits (such as ferrets, cats, camelids) need copulation to trigger GnRH secretion from the hypothalamus into the hypophysial portal system. Females use to display oestrous behaviour each 4-6 days (Milligan, 1982). The receptive sexual behaviour is induced by oestrogen, which acts on the brain (Bakker and Baum, 2000), producing different signals in the rabbit females: i.e. lordosis at the male presence (Theau-Clément et al., 2005) or red/purple vulva colour (Ubilla and Rebollar, 1995). When the follicles degenerate, the oestrogen secretion decreases, and rabbits enter into a non-receptive period (Harcourt-Brown, 2002). If mating occurs, genital somatosensory receptors are stimulated (Bakker and Baum, 2000) evoking signals funnel, via neural pathways (Lin and Ramirez, 1991); as consequence, a release of GnRH peaking 1–2 h after mating and followed by a pre-ovulatory release of luteinizing hormone (LH), from the anterior pituitary, leads to ovulation 11–12 h after mating (Bakker and Baum, 2000). This suggests that female rabbit reproduction requires tuned coordination of the hypothalamic-pituitary-ovarian axis in order to control folliculogenesis, oestrous cycle, sexual behaviour, and ovulation via a series of complex neuroendocrine feedback mechanisms (Boiti et al., 2006; Garcia-Garcia et al., 2020).

As in other mammals, fertilization occurs in the ampulla about 14 hours after mating or AI. If a non-fertile copulation occurs, pseudopregnancy takes place in the rabbit female after ovulation. The pseudopregnancy period is characterized by corpora lutea development and progesterone production. The corpora lutea reached maximum size 10-12 days after mating and serum progesterone concentration raised at Day 14 and then luteal regression starts; this process is completed around Day 18, when progesterone concentrations decline to basal values (Browning et al., 1980). The functional and structural luteolysis is mainly related to prostaglandin F2α (PGF2α) secretion by the uterine endometrium reaching its highest level at Day 17 of pseudopregnancy (Lytton and Poyser 1982).

CURRENT METHODOLOGIES FOR OVULATION INDUCTION

Considering the routinely use of AI in European rabbitry, many strategies to control or induce ovulation have been developed to increase the rabbits' reproductive performances and optimize human
resources. The main strategies currently used are: standardization of physical procedures and/or improvement of hormonal treatments with exogenous molecules.

Physical procedures
In rabbit does, an important factor responsible for ovulation induction seems to be the genital somatosensory stimuli during the copulation because most of females are able to ovulate only with mechanical stimulation (Rebollar et al., 2012; Viudes de Castro et al., 2017; Maranesi et al., 2018). Then, AI cannulas mimicking this effect has been studied.

- **Cannula types.** The type of AI cannula used affected the ovulation induction of the female rabbits: a short and flexible cannula showed higher values (64.0±8.0 %) than a long and rigid one (30.0±6.8 %). Authors concluded that the first cannula mimicked better the stimulation associated with the mating of the male to provoke ovulation induction (Viudes de Castro et al., 2017). However, when the authors compared these two types of cannulas inseminating does with a semen extender containing hormones (GnRH analogues, as reported below) no differences in does fertility and/or prolificacy were found. Further studies with cannulas able to adapt to female rabbit tract’s physiology could be interesting.

Exogenous hormonal treatments
Different hormonal treatments with exogenous hormones have been used in AI over the years:

- **hCG or LH.** The first treatment used consisted of an ovulation induction procedure with human chorionic gonadotropin (hCG) or LH administration (Adams, 1961). Their activities in rabbit does are the release of the oocyte from the follicle, but also initiate the conversion of the residual follicle into a corpus luteum that, in turn, produces progesterone to prepare the endometrium for a possible implantation (Theau-Clément, 2007). Although the pharmacological actions of hCG and LH are similar, their bioavailability is different because LH has a shorter half life than hCG (Simmon et al., 1988). Furthermore, the action of LH in the follicle is more selective: it induces earlier ovulation and improves the oocyte and embryo quality (after 24 and 48 h, respectively), due to the secretion of high levels of estradiol and progesterone (Molina et al., 1991). However, these types of treatments induce antibody formation and then, triggers an immune response when using repeatedly (Lebas et al., 1996; Boiti et al., 1995), increasing the number of haemorrhagic follicles by about 20 h after ovulation induction (Rebollar et al., 2012). For this reason, the utilization of these hormones has been discarded in the AI procedure.

- **Injection of parenteral GnRH analogues.** Intramuscular (i.m.) administration of GnRH or analogues is the most reliable method used nowadays because they can be used for repeated treatments and do not induce antibodies formation, in contrast to the LH or hCG administration. These molecules have the same biological activity as the natural one in the physiology of ovulation. Several different GnRH analogues have been studied: i.e. gonadorelin (Fertagyl, Intervet; effective dose: 20-40 µg/AI dose), lecirelin (Dalmarelin, Filtro; 5 µg/AI dose), buserelin (Receptal, Hoechst AG; effective dose: 1-2 µg/AI dose) and many others (Dal Bosco et al., 2011). They showed similar results to those obtained by natural mating (Theau-Clément, 2007), and triggered a LH peak 2 h after i.m. injection; then the AI should be performed during this period. Furthermore, their efficacy widely depends on the quantity used with a concentration range from 1 to 20 µg/AI dose (Ubilla and Rebollar, 1995; Rebollar et al., 2012; Dal Bosco et al., 2014). However, in most rabbit farms, GnRH is usually administered by the farmer himself, with the risk of calibration mistake and an increase in the time spent for each AI (Quintela et al., 2004).

- **Intravaginal administration of GnRH analogues.** Alternative use of GnRH analogues and a less-impactful strategy for animals is the intravaginal administration of such hormones. Their addition in the semen extender allows reducing the time consumed by farmers in AI procedure (Dal Bosco et al., 2011). However, the success of this method depends on the enzymes (proteases, namely aminopeptidases) present in the SP, the status of the vaginal mucosa, the extender composition and the type of analogue used (Dal Bosco et al., 2014).
It is well known that the vagina has a great potential for systemic delivery because of its large surface area, rich blood supply and permeability to a wide range of compounds, including GnRH analogues (Benziger and Edelson, 1983). On the other hand, due to the high presence of proteases in the vaginal tract, many of the molecules introduced can be degraded. Viudes-de-Castro et al. (2014) demonstrated that positive results in the reproductive performances were obtained when GnRH analogues (10 µg/mL of buserelin acetate) were added to 1:20 diluted semen than 1:5 dilution rate, during the AI practice, although variations due to the genetic lines tested were found.

Unfortunately, to achieve fertility results similar to those with i.m. GnRH administration, the intravaginal hormone concentration must be double the amount administered with the first method (Rebollar et al., 2012; Dal Bosco et al., 2014). As an alternative, the introduction of inhibitors of proteases like ethylenediaminetetraacetic acid (EDTA) or bestatin in the AI dose (Casares-Crespo et al., 2015), acting as hormonal protectors, has been studied. In this sense, Casares-Crespo et al. (2015) demonstrated that the aminopeptidases activity of SP was 55.5 % lower than the control with no inhibitors, when EDTA or bestatin were added to the AI extender. Furthermore, no negative effects in semen characteristics have been reported, when these molecules were added to the AI dose (Fernández-Serrano et al., 2017). A promising and innovative strategy tested is the use of chitosan-dextran sulfate nanoparticles as GnRH protector for intravaginal application in rabbit AI (Casares-Crespo et al., 2018). This can allow the reduction of hormone (buserelin acetate) concentration used in extenders (4-5 µg/AI dose), supplemented with bestatin and EDTA, without affecting the fertility and prolificacy of rabbit females. In addition, the effect induced by intravaginal administration GnRH analogues (4 µg/AI dose) and chitosan-dextran sulfate nanoparticles was similar to that of i.m. injection of the same molecules, and consist of an earlier LH-surge than that observed in does treted with 0.8 µg i.m. of GnRH (90 vs 120 min; Hassaneim et al., 2021).

Alternatives to the use of GnRH analogues

Restriction in the use of synthetic and/or exogenous hormones is leading to the study of some molecules naturally present in the SP with potential action on ovulation induction. This would be more animal-friendly methods for applying animal AI. One of this seminal component is the β-NGF. It is a member of the neurotrophin family, and it was first discovered for its effects on neuronal survival and differentiation (Levi-Montalcini and Hamburger, 1951).

- SP β-NGF. Recent studies have demonstrated that the rabbit SP contains a β-NGF amount ranged from 0.002 to 150 µg/mL (Maranesi et al., 2015, 2018, Casares-Crespo et al., 2018, García-García et al., 2018a, Castellini et al., 2019, 2020a). However, concentration changes depending on the individual variation, the age of rabbit bucks, the collection rhythm and other not clearly defined factors (Castellini et al., 2020a). Among these factors, the season seems to be very important. In this sense, Casares-Crespo et al. (2018) reported that the β-NGF content in rabbit SP during winter decreases 4-times compared with the other seasons. In agreement, Schneidgenova et al. (2011) found that during the winter season, sperm motility and concentration is lower than in other seasons, reflecting the natural fluctuation of breeding capability during the year.

Regarding the systemic role of β-NGF, it is reported that it plays a multi-physiological role in rabbit reproduction, acting by an endocrine, autocrine and paracrine way in female rabbits (Maranesi et al., 2018; Garcia-Garcia et al., 2020). However, no clear evidence exists on the specific role of β-NGF on the ovulation induction in this species: it is supposed that it collaborates with the sensory stimulation exerted by coitus, which is considered the main activator of LH release (Garcia-Garcia et al., 2020). As a consequence, some groups of researchers have focused on the study of the molecular mechanisms by which this molecule could affect the rabbit ovulation to improve rabbit reproduction. However, some doubts remain on whether the β-NGF is able to trigger the ovulation in rabbits or if the nervous system is the main stimulus in this species and β-NGF has only a modulatory role on rabbit ovulation. Silva et al. (2011) did not detect ovulation in rabbits after i.m. injections of rabbit SP at different doses, although the same procedure induced ovulation in llamas. Conversely, Cervantes et al. (2015) reported that i.m. injection of rabbit SP induced ovulation in group-housed, but not in individually
housed rabbits. An experiment conducted by Rebollar et al. (2012) confirmed ovulation in 75% of rabbits after intravaginal administration of raw semen without treatment with a GnRH analogue, probably due to the semen components effect (e.g. β-NGF). Quite surprisingly, however, there was no (Rebollar et al., 2012) or a reduced percentage of ovulation (17%, Maranesi et al., 2018) in does inseminated with raw semen after lumbar intra-epidural anaesthesia.

A recent study (García-García et al., 2018b) reported that only 1 of 6 female rabbits treated intramuscularly with 24 µg of murine β-NGF, ovulated, and no preovulatory elevation in blood plasma LH was detected. In the same study, mechanical stimulation of the vagina increased the ovulation rate by 50% in β-NGF-treated females, suggesting that besides the β-NGF-induced ovulation these females needed a physical stimulation. Similarly, Maranesi et al. (2018) reported ovulation rates of 67% and 17% in female rabbits inseminated with raw semen in non-anesthetized and lumbar-anesthetized females, respectively; in all these females, ovulation was preceded by an increase in plasma LH concentration during the 2 h after AI. Lumbar anaesthesia before AI blocked the increase in plasma LH concentration, attenuated the systemic blood rise of β-NGF and reduced the ovulation rate. The authors postulated that other SP cytokines, beside β-NGF, might contribute to local stimulation of the female reproductive tract and ovulation in the rabbit (Maranesi et al., 2022). Based on these findings, the same authors proposed a novel paracrine mechanism driven by raw semen OIF, likely β-NGF, in the uterus/cervix, which reinforces the neuroendocrine reflex provoked by vaginal stimuli during natural mating.

This novel mechanism could be summarized as follows: (a) semen-derived β-NGF stimulates de novo synthesis of β-NGF in the uterine wall, (b) both seminal and uterine β-NGF are absorbed into the bloodstream and act directly on the ovary, (c) semen derived and locally synthesized β-NGF stimulate uterine/cervix sensory neurons, which trigger GnRH neurons in the hypothalamus. From a cellular viewpoint, the β-NGF exerts its own biological functions binding two cell surface receptors: TrKA, a high-affinity receptor, and p75 neurotrophin receptor (p75NTR), a low-affinity receptor (Holgado-Madruga et al., 1997). Interactions among TrKA and p75NTR pathways are critical for the final biological effects of β-NGF in the different cell types. Indeed, β-NGF is produced and acted both in male and female reproductive tissues (Maranesi et al., 2016, 2018; Castellini et al., 2020a; García-García, 2018b; Figure 1).

In rabbit female, the presence of the β-NGF and its receptors in several types of ovarian cells (theca, granulosa and cumulus), corpus luteum (Zerani et al., 2021) and in uterus and oviduct (Maranesi et al., 2018, García-García, 2018b) involves important roles in this reproductive system, such probably in folliculogenesis and ovulation (García-García et al., 2020), as well as in embryo development (Pei, 2010). In addition, the β-NGF could be a powerful stimulator of prostaglandins biosynthesis by the rabbit uterus, because induces the in vitro synthesis secretion of both PGF2α and PGE2 (Maranesi et al., 2016). This type of effect suggests that β-NGF may also represent a link between the immune, endocrine, and nervous system (Tometten et al., 2005; El Allali et al., 2017).

Indeed, prostaglandins and/or nitric oxide are synthesized by the uterus after β-NGF binding to its receptors in the sensory neuron stimulation. β-NGF-induced prostaglandins secretion would then stimulate directly or indirectly (via local chemical mediators) uterine/cervix neurons that reach, via spinal cord afferent pathways, the hypothalamic centres responsible for the LH surge that induces ovulation). Even, an influence of both estradiol and NGF, on gonadotrophin secretion in other induced ovulators as camelids has been reported (Carrasco et al., 2021). However, in the case of rabbits, only a luteotrophic effect of estradiol has been evidenced by preventing apoptosis in luteal cells (Godman et al., 1998), also demonstrated by the decreased expression of luteal type 1 estrogen receptor in PGF2α-induced luteolysis (Maranesi et al., 2010).

In rabbit male, the β-NGF and its receptors have been identified in several parts of the reproductive system (testes, epididymis and accessory glands; Maranesi et al., 2016; Sanchez-Rodriguez et al., 2018, 2019a) and in epididymal and ejaculated sperm, with a high variation rate depending on the physiological status of sperm (Castellini et al., 2020a). The different distribution and abundance of
receptors in raw sperm of rabbit modulates the role of β-NGF in sperm behaviour and then, their efficacy when it is added to semen extender (Castellini et al., 2020a, b).

Recently, it has been demonstrated that the β-NGF affected the sperm speed, apoptosis and capacitation, mainly binding the p75NTR receptor. In contrast, motile, live cells, necrosis and acrosome reaction were modulated via TrKA (Castellini et al., 2019, Figure 1).

Figure 1: Summary of the β-NGF activity in female and male rabbit reproductive physiology. The upper section describes the systemic role of β-NGF (nervous, endocrine and paracrine pathways); the downer section describes the physiological role of β-NGF in relation to the TrKA/P75NTR receptors-binding and the cellular localization of the receptors in reproductive tissues.

Such outcomes are justified by the different distribution of receptors on spermatozoa: in ejaculated sperm p75NTR is mainly located in the midpiece and tail, whereas TrKA resides in the head and acrosome (in agreement with other animal species: Li et al., 2010; Sari et al. 2018). Furthermore, the p75NTR receptors abundance on spermatozoa membrane seems to increase with the storage-period (8-12 hours), while TrKA remained unchanged (Castellini et al., 2020b). These findings suggest that in in vitro condition, the β-NGF exerts its “pro-survival” effect only within 8 hours, hence, when the β-NGF is used in the AI extender, the AI practice must not exceed this time, in order to avoid that the β-NGF act as “pro-death” factor for sperm (due to the physiological increasing of p75NTR receptors on cell surface. Such finding is in agreement with the physiological destiny of sperm during the fertilization process: after mating, sperm need about 6-8 hours to reach the egg in tubes (Harper, 1970); after this time, the sperm that were not able to fertilized the egg undergo to programmed death (apoptosis) and as a consequence, they were eliminated. The present approach could also be exploited in semen conservation and then improve assisted reproduction techniques. In agreement, Sari et al. (2020) demonstrated in llama, that the addition of 10 or 100 ng/ml of human β-NGF in refrigeration sperm promoted motility and vigour, while viability and mitochondrial activity are maintained.
rrβ-NGF. Recently, it was produced a recombinant NGF from rabbit prostate tissue and its effects were tested on sperm parameters and does ovulation rate (Sanchez-Rodriguez et al., 2019b). Authors demonstrated that the in vitro addition of rrβ-NGF to the ejaculated semen (1 µg/mL) did not affect sperm viability, whereas sperm motility parameters were enhanced. Addition of this same concentration of rrβ-NGF to the seminal dose administered via the intravaginal route in does induced ovulation with a delayed LH peak, leading to a plasma progesterone increase, gestation and delivery. Afterwards, the same Authors (Sanchez-Rodriguez et al., 2020), demonstrated that such modulation of male and female reproductive parameters was dose-depending. The authors found an intermediate ovulation rate (OR, 30, 60 and 42.9%, respectively), at concentrations of 20 ng/ml, 1 mg/ml and 20 mg/ml of rrb-NGF, respect to the highest (100% OR) ovulation rate obtained with the GnRH i.m. administration, whereas other doses tested (100 ng/mL and 100 mg/mL) had the lowest OR (20 and 14.3%, respectively). The present features open up new perspectives in the use of this molecule in the practice of AI although improvements should be done to obtain reproductive rates similar to those of GnRH doses, probably by nanoprotection of the molecule.

FURTHER RABBIT REPRODUCTION STRATEGIES

Due to the present context of the refuse of hormonal treatments in animal production and the improvement of animal welfare with a more physiological approaching, the focus on β-NGF application in rabbit reproduction is of growing interest. It could be considered an alternative and innovative strategy to avoid exogenous hormonal treatments in ovulation induction and to improve animal welfare in rabbits avoiding i.m. injection. Such a way, a dual using approach could be provided:

i. The exogenous addition of recombinant β-NGF to the semen extender could be beneficial for successful refrigeration of sperm and related assisted reproduction techniques.

ii. The development of strategies to use NGF by intravaginal via probably byprotection of this factor to avoid its degradation, considering that all growth factors have a short half-life when they are in vivo administered.

In any case, studies about the efficiency in rabbit ovulation rate and on the effect on sperm characteristics (e.g. dose, incubation time, storage condition) when β-NGF is used must be continued, and methods including mechanical stimulus and β-NGF could be considered.

ACKNOWLEDGEMENTS

Authors wish to thank Ms. Beatriz Velasco, Mr. Giovanni Migni and Mr. Osvaldo Mandoloni for their contribute in animal handling and Dr. Alessandra Pistilli, Dr. Anna Maria Stabile, Prof. Mario Rende, Dr. Francesca Mancuso, Prof. Massimo Zerani, Prof. Cristiano Boiti, Dr. Linda Petrucci, Prof. Gabriele Brecchia and Dr. Ana Sanchez-Rodriguez for their contribution to the achievement of the different experiments necessary to increase knowledge on β-NGF role in rabbit reproduction.

REFERENCES

