Boudour Khedidja, Daoudi-Zerrouki Nacira, Lankri Elhassen, Aichouni Ahmed

EFFECT OF INCORPORATION OF MALVA SYLVESTRIS POWDER IN RABBIT DIETS ON ZOOTECNICAL AND BLOOD PARAMETERS

Full text of the communication
+ Slides of the oral presentation

How to cite this paper
EFFECT OF INCORPORATION OF MALVA SYLVESTRIS POWDER IN RABBIT DIETS ON ZOOTECHNICAL AND BLOOD PARAMETERS

Boudour Khedidja 1*, Daoudi-Zerrouki Nacira2, Lankri Elhassen1, Aichouni Ahmed3

1Hassiba Benbouali University, Chlef, Algeria.
2Resources Naturals Laboratory- Mouloud Maameri University, Tizi-Ouzou, Algeria,
3El Wancharissi University, Tissemsilet, Algeria.

*Corresponding author: Tel: (+213) 027727906. E-mail: k.boudour@univ-chlef.dz

ABSTRACT

Malva sylvestris (Malvaceae) is an annual plant widely used as a medicinal plant in Algeria. In order to contribute to the search for better zootechnical performance of adult rabbits (Oryctolagus cuniculus), the effect of the incorporation of Malva sylvestris leaf and stem powder on some zootechnical (feed intake, body weight, scrotal perimeter, antioxidant capacity) and blood parameters (NSF, triglyceride content, cholesterol content) of male rabbits (six-seven months old) was studied in this work. Lot L2 (n=18) received the standard food of the control lot (L1, n=18), supplemented with 3% Malva sylvestris powder. Duration of two-month supplementation with Malva sylvestris powder had a positive impact on the parameters studied. The high levels of phenolic compounds (polyphenols and total flavonoids) and tannins found in the rabbits must have improved the antioxidant power, body weight and scrotal perimeter of the treated rabbits. No significant differences were revealed in hematological parameters.

Key words: Rabbit, Malva sylvestris, Oxidative power, Live weight, Cholesterol-triglyceride

INTRODUCTION

In Algeria, rabbit breeding is in continuous development. Its meat has become more and more appreciated by the population. Rational breeding is carried out there with a diet based exclusively on rabbit pellets. However, it is recognized that plants are the major source of medicines thanks to their richness in products known as secondary metabolism products (Eddouks, 2007). Plant extracts are used in rabbit nutrition in order to reduce stress and induced pathologies and, consequently, reduce the use of antibiotics (Brien et al., 2005). Ben-Shaul et al. (2000) showed a decrease in oxidative stress in rabbits receiving plant extracts. Among these plants, Malva sylvestris, was a good candidate to substitute antibiotic-based additives and hormonal injections that are banned because of the antibiotic resistance that threatens human health after consumption (Briens et al., 2005).

Malva sylvestris is an annual perennial herbaceous plant of the Malvaceae family. It is well known in Algeria and the Mediterranean basin region and is widely used as a medicinal plant because of its soothing properties for the respiratory tract, useful for the treatment of many internal and external symptoms and inflammations such as sore throat, mouth ulcers, bronchitis, hoarseness and laryngitis. The objective of this work is to supplement the powdered feed of the Malva sylvestris plant known in Algeria as "el khobeiza" on some zootechnical parameters (body weight, weight gain, feed intake, and testicular size), and on some serum biochemical parameters (cholesterol and triglycerides) in male rabbits.

MATERIAL AND METHODS

Animals and experimental design

The aerial parts of Malva sylvestris were harvested in December 2018 in the Chlef region. The harvested parts (leaves and stems) were dried and ground to powder as a supplement. In the rabbit farm of the Hassiba Benbouali University of Chlef, 36 male rabbits of the Algerian synthetic strain "ITELV 2006", aged between 6 to 7 months and having an average weight of 3575 ± 95g were kept...
in individual cages designed in wire mesh. The rabbits received 150g/day of a pelleted commercial feed containing on dry matter basis: alfalfa (29%), corn (18%), soybean meal (12%), molasses (3.5%), amino acids (0.3%), calcium (0.89%), phosphate (0.60%), trace elements, salt (0.6%) and vitamins(10,000IU/kg). The chemical composition of the diets was analyzed by Wende’s method for crude fiber, Kjeldahl method for proteins, solvent extraction for fat, oven drying at 105 °C for the dry matter, incineration at 500-550 °C in a muffle furnace for the ashes, colorimetric methods for calcium and spectrometric method for phosphorus. The analytical characteristics are given in Table 1. Access to water was free and ensured by an automatic watering system.

Table 1: Chemical composition of diet (%)

<table>
<thead>
<tr>
<th>Component</th>
<th>Lot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>91.4</td>
</tr>
<tr>
<td>Ashes</td>
<td>7.51</td>
</tr>
<tr>
<td>Crude protein</td>
<td>14.5</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>9.49</td>
</tr>
<tr>
<td>Fat</td>
<td>3.38</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.89</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.60</td>
</tr>
</tbody>
</table>

The 36 rabbits were divided, according to the diet, into two homogeneous lots (n = 18): a control lot (L1) and an experimental lot (L2). For the batch (L2), the standard diet was supplemented by the daily addition of 3% of the powder of Malva sylvestris. In order to obtain a homogeneous mixture and to allow animals to completely consume the added Malva sylvestris powder, half of the feed was moistened to dissolve the powder sprinkled on it. The diets were distributed in the morning and the quantities consumed and refused were weighed daily. The evolution of the body weight and the size of the testes was followed during the whole experimental period by weekly weights and measurements. Blood samples were taken from the arteries of the ears in heparin tubes, then centrifuged at 3000 rpm for 10 minutes and were subjected of biochemical parameters assaying in quantitative and qualitative analysis (FNS), triglycerides and cholesterol.

Phytochemical analysis and evaluation of antioxidant activity

Chemical analyses included the determination of polyphenols by Folin-ciocalteu reagent according to Li et al. (2007), the determination of flavonoids by aluminium trichloride according to Bahorun et al. (1996). The total tannin content was estimated by the method of Edeoga et al. (2005). The antioxidant activity of the extract obtained was determined by trapping the free radical DPPH (2,2-diphenyl-1-picrylhydrazyl), which is purple in colour and turns yellow when is reduced by a proton donor (Molyneux, 2004).

Statistical Analysis

Data collected were analyzed using XLstat(2016) software for calculations and descriptive analysis. All parameters studied were analyzed by a fixed-effects analysis of variance model including the effect of diet as main effect.

RESULTS AND DISCUSSION

Phytochemical analysis

The polyphenolic density of *Malva sylvestris*, presented in Table 2, was higher compared to the 220 mg/100 g value reported by Shyamala and Jamuna (2010) for a methanolic extract of *Malva pavilora* of the same genus. Our samples contained acceptable levels of flavonoids compared to Beta vulgaris (6.85mg/g, Aidaoui et al.,2013).

Table 2: Content of *Malva sylvestris* in phenolic, flavonoid and tannin compounds (in mg/g)

<table>
<thead>
<tr>
<th>Chemical compound</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolic compounds</td>
<td>4.3</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>5.5</td>
</tr>
<tr>
<td>Tannins</td>
<td>1.7</td>
</tr>
</tbody>
</table>

standard antioxidants (gallic acid and ascorbic acid). This is probably attributed to the presence of polyphenolic compounds which are known as antioxidant substances with the ability to trap radical species and reactive forms of oxygen (Hennebelle et al., 2004). Mansouri et al. (2005); Beta et al. (2005); Samaniego-Sánchez et al. (2007), have shown that the antioxidant capacity determined by the DPPH test increases
with the polyphenol content. The good antioxidant power of our samples can also be attributed to the flavonoids which are excellent, natural antioxidants, (Panovska et al., 2005).

Feed intake and body weight of rabbits
The results in Table 3 showed a significant effect (P<0.05) of the addition of Malva sylvestris powder to the feed. Indeed, a clear improvement in weight and feed intake was observed on animals of L2. The low intake of L2 may be due to a relatively high protein level. Chemical analysis of the dried leaves of the mallow revealed that the plant contains 19.3% of protein in the stems and 18.9% in the leaves. In France, Flores (2011) gave a protein content of Malva sylvestris stems of 14.3%, while Barros et al. (2010) recorded a rate of 12.2% protein in the leaves. Khudair Ahmed and Khalil Ibrahim (2016) recorded a much higher content (30.5%) of crude protein. The incorporation of Malva sylvestris powder into the feed had a significant effect (P<0.05) on the change in body weight of rabbits for eight weeks compared to the control. This can be explained by the high protein level in the diet for L2. Indeed, Lebas and Ouhayoun (1987) reported that the rate of growth and the body composition increases with a high protein level.

Testicles
The diet exerts a significant effect (P<0.05) on the circumference of the testicles (Figure 2). Our result is in agreement with Khudair Ahmed and Khalil Ibrahim (2016) who reported an increase in the testicular weight in the quail fed by Malva parviflora (same genus as Malva sylvestris).

Blood count formula (FNS)
The FNS analysis does not reveal any significant difference (P>0.05) between animals of the two groups (Figure 3). This is in contradiction with Hajyani et al. (2015) who observed that the extract of Malva sylvestris increased significantly the major plasma parameters.

Biochemical parameters
Triglyceride assays showed a significant decrease in the L2 lot compared to the control lot (280 vs 180 g/dl, while the level of cholesterol was higher in lot 2 (90 vs 18 g/dl). Our results are in agreement with those reported by Shahriyari et al. (2018) who demonstrated that Malva sylvestris complements have significantly reduced blood glucose, triglycerides and cholesterol.
CONCLUSION

Supplementation of rabbits’ feed with additives based on Malva sylvestris could improve the zootechnical performance of male rabbits, such as the increase in their body weight and the decrease in the feed intake thanks to its antioxidant capacity. The hematological parameters measured showed that Malva powder did not have effect on the SNSF parameters (white blood cells, red blood cells, lymphocytes, granulocytes and platelets), but reduced cholesterol and triglycerides. Our results deserve to be continued by other studies to take into account the phytobiological importance in improving animal performance.

REFERENCES

EFFECT OF INCORPORATION OF SYLVESTRIS MALVA POWDER IN RABBIT FEEDING ON SOME ZOOTECHNICAL AND BLOOD PARAMETERS

Boudour K¹., Zerrouki Daoudi N³., Lankri E¹., Aichouni A².

¹Hassiba Benbouali university, Chlef, Algeria.
²El wancharissi university, Tissemsilet, Algeria.
³Mouloud Maameri university, Tizi Ouzou, Algeria.
In Algeria, intensive rabbit breeding is carried out with a diet based exclusively on rabbit pellets.

However, plants are the major source of drugs thanks to their richness in so-called secondary metabolism products.

In rabbit nutrition, plant extracts are used with the aim of reducing stress and induced pathologies and, consequently, reducing the need for antibiotics and reduce oxidative stress.

Malva sylvestris, was a good candidate to substitute antibiotic-based additives and hormonal injections which are prohibited due to antibiotic resistance which threatens human health after consumption.
To estimate the effect of Malva sylvestris plant powder on weight, amounts of food ingested, testicular size, as well as some serum biochemical parameters (cholesterolemia and triglycerinimia) in male rabbits.
The removed parts (leaves and stems) of Beta vulgaris are dried and ground into powder serving as:

- A supplement
- Phytochemical analysis
- Evaluation of antioxidant activity.

Phytochemical analysis includes:

- Polyphenols
- Flavonoids
- Tannins
Materials and methods

36 Male rabbits "ITELV 2006 »

Lot 1 of control (n=18)
150g granulated feed

L2 expérimental (n=18)
150 g granulated feed +3% de Malva sylvestris

Weigh the quantities consumed and refused daily

Weekly animal weighing

Weekly testicular size measurement

Determinatio n of biochemical parameters
Results and discussion

- **Analyse phytochimique**

<table>
<thead>
<tr>
<th>Table 2 : Chemical compound</th>
<th>content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phénolic compounds</td>
<td>4.3</td>
</tr>
<tr>
<td>Flavonoïds</td>
<td>5.5</td>
</tr>
<tr>
<td>Tanins</td>
<td>1.7</td>
</tr>
</tbody>
</table>

- **Antioxidant activity (figure 01)**

- **Feed intake and body weight of rabbits**

| Table 3: Evolution of the weight and daily feed intake (g/d) (n = 18) |
|---|------------------------|
| | Lot 1 | Lot 2 | P-value |
| Feed intake | 142 | 125 | <0.05 |
| Initial weight | 3530 | 3625 | <0.05 |
| Final weight | 3690 | 3826 | <0.05 |
| Weight gain | 65 | 296 | <0.05 |
Results and discussion

- **Testicles**
 - Figure 2: Evolution of the rabbit scrotal perimeter (cm) during the experimental period according to the diet (n=18)

- **Biochemical parameters (blood count formula (FNS))**
 - Figure 3: Blood counts (%) (n=18)
Supplementation of rabbits’ feed with additives based on *Malva sylvestris* could improve the zootechnical performance of male rabbits, such as the increase in their body weight and the decrease in the feed intake thanks to its antioxidant capacity.

The hematological parameters measured showed that Malva powder did not have effect on the SNSF parameters (white blood cells, red blood cells, lymphocytes, granulocytes and platelets), but reduced cholesterol and triglycerides. Our results deserve to be continued by other studies to take into account the phytobiotic importance in improving animal performance.

CONCLUSION

Thank you for your attention