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ABSTRACT 
 
Data from ten generations divergent selection experiment for uterine capacity in rabbits were analysed 
to estimate the genetic parameters using a model which postulates that environmental variance is 
partly under genetic control. The posterior mean of additive variance at variance level was 0.12 and 
the highest posterior interval at 95% did not include zero. The estimated correlation between the 
additive genetic effects on the mean and those on the variance was -0.74 with a posterior interval far 
away from zero. A study of model fit/model comparison was also carried out using three different 
approaches: 1) a version of model checking, based on the regression of the average sampling variance 
of records within individuals on mean phenotypic values; 2) the deviance information criterion, an 
index that encapsulates the fit of a model and its complexity; 3) cross validation based on CPOs. The 
three approaches provided statistical support for the genetically structured heterogeneous variance 
model. 
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INTRODUCTION 
 

In animal breeding, selection has focused on improving the mean of traits, such as litter size in prolific 
species (pigs and rabbits). However, the variance of the trait also has important economic 
consequences. Thus, it is desirable that, e.g., a rabbit produces not only large litters but also litters of 
similar size across parities. In recent years evidence has been reported indicating that environmental 
variation may be partly under genetic control in rabbit weight at birth (Garreau et al., 2004; Bolet et 
al., 2007), in pig litter size (Sorensen and Waagepetersen, 2003), in snails growth (Ros et al., 2004) 
and poultry (Rowe et al., 2005). Also, Mackay and Lyman (2005) showed substantial (genetic) 
variation in the environmental coefficient of variation in abdominal bristle number among 
chromosome substitution lines in Drosophila melanogaster. 
 
In this work inferences are presented based on a Gaussian mixed model with heterogeneous residual 
variance (San Cristobal-Gaudy et al., 1998) adjusted to uterine capacity data (the maximal number of 
fetuses that the dam is able to support at birth when ovulation rate is not a limiting factor) from an 
experiment of divergent selection in rabbit. The objective of this work is mainly to investigate whether 
the data provide support for the model postulating that environmental variation for uterine capacity is 
partly under genetic control. 
 
 

MATERIALS AND METHODS 
 
Animals 
 
The data originate from a ten generation divergent selection experiment for uterine capacity in rabbits. 
Animals were derived from a synthetic population of the experimental farm at the Universidad 
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Politécnica de Valencia. Uterine capacity was estimated as litter size in unilateral ovariectomized 
does, which doubles the number of ova shed by the remaining ovary. The left ovary was removed in 
all does before puberty via midventral incision between 14 and 16 weeks of age. The females were 
first mated at 18 weeks of age and thereafter 10 days after parturition, producing in total up to four 
parities. Details of the technique are given by Santacreu et al. (1990). Selection was performed on 
estimated breeding values for litter size up to four parities, by using a BLUP procedure and a 
repeatability animal model with year-season and parity fixed effects, but males were selected within 
59 sire families in order to reduce inbreeding. Reproduction was organized in discrete generations. 
Data from ten generations of selection were used. In each divergent selection line, there were 
approximately 40 females and 12 male parents each generation. Number of records was approximately 
the same for high and low line. The total number of records for uterine capacity was 2,996. The 
number of animals in the pedigree was 1,161 from which 85 belong to the base population. 
 
Model Fitted 
 
The selection experiment was analysed with two models of different levels of complexity. 
 
Model 1 
Model 1 is the classical repeatability additive genetic model that was used to carry out selection 
decisions during the course of the experiment. It assumes that the sampling model of the data, given 
location parameters b, a, and p and given the residual variance σ2

e, is the normal process 
y | b,a,p, σ2

e ~ N(Xb + Za +Wp, Iσ2
e),  

where now b contains year-season and parity effects with thirty and four levels, respectively. Vectors a 
and p contain additive genetic values (1161 levels) and permanent effects (929 levels) respectively, 
and σ2

e is the residual variance. The known incidence matrices are X, Z and W and I is the identity 
matrix.Vectors p and a were assumed to be a priori independently and normally distributed; that is 

p | σ2
p  ~ N (0, σ2

pI) 
a | σ2

a  ~ N (0, Aσ2
a  )  

where A is the known additive genetic relationship matrix. The vector b was assigned an unbounded 
uniform prior distribution and the variance components σ2

p, σ
2
a, σ

2
e, scaled inverted chi square 

distributions. This model assumes homogeneity of environmental variation. It was fitted using a Gibbs 
sampling algorithm, as described, for example, in Sorensen and Gianola (2002). 
 
Model 2 
The Model 2 was proposed by SanCristobal-Gaudy et al. (1998) in which it postulates that 
environmental variance is heterogeneous and partly under genetic control. The sampling model for the 
data is Gaussian: 

y | b,a,p,b*,a*,p* ~ N(µ, diag ((σ2
i)

n
i=1)),  

Where y is the vector of data for litter size and diag ((σ2
i)

n
i=1) is the diagonal matrix with diagonal 

entries σ2
i ,  

(log σ2
i )

 n
i=1  = X*b + Za* + Wp*    and µ = (µ ) n

i=1 = Xb + Za +Wp 
The vectors b and b* contain effects associated with year-season and lactation status, with the same 
levels as Model 1, and X, Z and W are known incidence matrices. Vectors p and p* contain permanent 
environmental effect for litter size and are assumed to be independently normally distributed 

p | σ2
p  ~ N (0, σ2

pI) 
p* | σ2

p*  ~ N (0, σ2
p*I)  

Vector (aT, a*T) contain normally distributed additive genetic effects 
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A is the additive relationship matrix, ρ is the coefficient of genetic correlation, and (σ
2
a, σ

2
a*) are 

additive genetic variances associated with the distribution of (a, a*). Briefly, a priori, b, b* were 
assigned normal distributions with zero mean vector and diagonal matrix with very large diagonal 
elements. The variance parameters σ

2
a, σ

2
a*, σ

2
p, σ

2
p* were assigned scaled inverted chi-squared 

distributions (ν=4 and S=0.45) and ρ was assigned a uniform prior bounded between -1 and 1. The 
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implementation was based on the MCMC (Markov chain Monte Carlo) algorithm proposed by 
Sorensen and Waagepetersen (2003). The results reported from each model are based on MCMC runs 
consisting of 1000000 iterations. Convergence was tested using the Z criterion of Geweke (Sorensen 
and Gianola, 2002) and Monte Carlo sampling errors were computed using time-series procedures 
described in Geyer (1992).  
 
Model Checking and Model Comparison 
 
Three approaches were used to question the validity of the models. First, a version of model checking 
is presented, based on the regression of the average sampling variance of records within individuals, 
on mean phenotypic values. Second, the deviance information criterion (DIC) provides a comparison 
of the global quality of two or more models, accounting for model complexity (Spiegelhalter et al., 
2002). Finally, cross validation based on CPOs (Gelfand et al., 1996) provides a more detailed 
inspection disclosing which specific data points are better fitted by the models. In addition, the set of 
CPOs contain the same information about model performance as the Bayes factor (Besag, 1974) 
(when the latter exists), and in this way, it provides also a measure of the models' overall quality.  
 
 

RESULTS AND DISCUSSION 
 
Variance components 
 
Table 1 shows Monte Carlo estimates of posterior means and of 95% posterior intervals for variance 
components derived from Model 1 and Model 2. The additive variance σ2

a is a little higher and the 
permanent environmental variance σ

2
p a little lower in the case of Model 2. The posterior mean of the 

correlation coefficient is -0.74. In perfect agreement with the results of Ibanez-Escriche et al. (2008) in 
non ovariectomized does. The Monte Carlo estimate of the 95% posterior interval indicates that the 
support of the posterior distribution is shifted a long way from zero. Moreover, the posterior means for 
σ

2
a* and σ2

p* were similar and their 95% posterior intervals did not include the zero. 
 
Table 1: Monte Carlo estimates of posterior means (first row for each model) and of 95% highest 
posterior density intervals (second row for each model) of variance components. σ2

a (σ
2
a*): additive 

variance at the level of the mean (variance); σ
2
p (σ

2
p*): permanent environmental variance at the level 

of the mean (variance); ρ: genetic correlation 
Model σ

2
a σ

2
p  ρ σ

2
a* σ

2
p* 

1 0.59 0.51 - - - 
 0.32;0.86 

 
0.28;0.8 - - - 

2 0.82 0.44 -0.74 0.16 0.12 
 0.48;1.28 0.20;0.72 -0.90;0.52 0.10;0.25 0.07;0.18 

 
Model checking and model comparison 
 
The 929 females with records were sorted according to their mean uterine capacity (across parities) and 
divided into 11 groups of approximately 85 individuals. Mean uterine capacity and average variance of 
records (parities) within individuals was computed for each group. In order to visually explorer a possible 
association between mean and variance, the average group variances were plotted against the group 
averages (Figure 1). Also, a linear regression was fitted and the estimate is - 0:23 (standard error 0.07), 
indicating that as uterine capacity increases, the variation among records within an individual decreases. 
 
Figure 2 (left) shows the difference in CPO’s between Model 2 and Model, where the CPO’s are sorted 
from the smallest to the largest for the 2996 records. For approximately 2/3 of the data there is very little 
difference in the CPO’s for both models. However, for the remaining 1/3 of the data, Model 2 shows a 
better fit. Figure 2 (right) shows which points are best fitted by Model 2. The data are ordered from the 
smallest to the largest value of uterine capacity. There is wide overlap for both models, with the exception 
of observations in the center of the distribution, where Model 2 results in a better fit than Model 1.  
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The Monte Carlo estimates of the DICs for Model 1, and 2 are 7810, and 7719 respectively. Based on 10 
replicates, the respective Monte Carlo standard deviations are 10.50, and 0.27, respectively. This analysis 
favours Model 2, followed by Model 1 
 

Figure 1: Association between group average sampling variances between uterine capacity records across 
parities within individuals, versus group mean uterine capacity (averaged over parities) 
 

 

Figure 2: Left: Difference in conditional posterior ordinates (CPO's) between Model 2 and Model 1, 
sorted, from smallest to largest difference. Right: CPO's from Model 1 (dark points) and Model 2 (light 
points) plotted against uterine capacity 

 
 

CONCLUSIONS 
 
In the present work two models were compared using various criteria and the results of this exercise 
favour Model 2. The association between the variance between records within individuals and uterine 
capacity in Figure 1 suggest an association between environmental variation and additive genetic values 
affecting mean uterine capacity. This was further supported by fitting Model 2 from which the posterior 
distribution of the correlation coefficient ρ was obtained. The mean of this posterior distribution was -0.74 
and the support was shifted a long way from the value of zero (see Table 1). Further, the Monte Carlo 
estimate of the 95% posterior interval of the additive genetic variance associated with the environmental 
variance was (0.10, 0.25) and the support is comfortably away from extremely small values in the vicinity 
of zero. 
 
The deviance information criterion favours Model 2 relative to the other model. This agrees well with the 
analysis based on the conditional predictive ordinates. For two thirds of the data, the CPO’s are hardly 
distinguishable, but for the remaining third, the CPO’s favour Model 2. 
 
The results of the analyses reported would indicate that the environmental variance of uterine capacity is 
partly controlled by additive genes. Besides, there is a high negative association between the additive 
genes affecting the mean and those affecting environmental variance for uterine capacity. From a breeding 
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perspective, it is interesting due to this open the possibility of reducing the environmental variance of 
uterine capacity and increasing his mean by means of selection. 
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