REFLECTIONS ON RABBIT NUTRITION WITH A SPECIAL EMPHASIS ON FEED INGREDIENTS UTILIZATION

LEBAS F.

Cuniculture, 87a Chemin de Lassère, 31450 Corronsac, France lebas@cuniculture.info

ABSTRACT

In this invited communication the author proposes a list of nutritional recommendations for rabbits of different categories: growing from 18 to 42 days, from 42 to 80 days, for breeding does according to productivity (40-50 kits weaned per doe/year or more than 50) and for a single diet suitable for all rabbits. Recommendations taking account the last published data, are divided in 2 groups. The first corresponds to nutrients which contribute mainly to feed efficiency: digestible energy, crude and digestible protein, amino acids, minerals, and fat-soluble vitamins. The second group corresponds to nutrients which contribute mainly to nutritive security and digestive health: different fibre components (lignins, cellulose, hemicelluloses) and their equilibrium, starch and water soluble vitamins. In a second part, 387 papers published during the last 30 years on raw material utilisation in rabbit feeding were analysed. In a total of 14 tables, the 542 corresponding experiments were summarised each by the identification of the raw material, by the highest level of incorporation used in the experiment, by the highest acceptable level, by the main ingredient(s) replaced by the raw material studied, and finally by the authors reference. Raw materials studied were those used in temperate as well as in tropical countries. The raw material were grouped according to the following categories: raw material used as single food (24 experiments), cereals and byproducts (43 exp.), other carbohydrates source of energy (62 exp.), fats (27 exp.), full-fat oleaginous grains (10 exp.), oil cakes and meals (43 exp.), proteic seeds such peas or beans (42 exp.), miscellaneous sources of protein such yeast or leaf protein (18 exp.), animal products (21 exp.), non-protein nitrogen source such urea (9 exp.). forages (157 exp.), cereal straws, alkali treated or not (33 exp.), cover or parts of dried grains source of fibre such stalks, hulls or cobs (19 exp.) and industrial byproducts usable as fibre source (51 exp.).

Key words: nutritional recommendations, raw materials, data basis

NUTRITIONAL RECOMMENDATIONS

Recent progresses in rabbit nutrition research have increased the number of criteria included in the nutritional recommendations, especially in the domain of fibrous components (GIDENNE, 2000; FORTUN-LAMOTHE and GIDENNE 2003). Thus it becomes very difficult to conceive an economical diet which respects exactly all recommendations. More, the basic reason of some recommendations is the highest performance possible in term of production or feed efficiency. For some others, the basic reason is the digestive flora nutrition and the digestive health of the rabbit.

In the first group are recommendations for energy, protein quality and quantity, fatsoluble vitamins or minerals. For these nutrients, the objective of the nutritionist is to conceive a diet which, after digestion, absorption and blood transport, can provide the rabbit cells for the vital elements at the lowest physiological price possible. This means that diet's digestibility must be as efficient as possible and that the nutrient proportions must be as balanced as possible in order the avoid deficiencies or nutrients excesses which would be eliminated at great cost through urine or faeces.

In the second group are recommendations for starch, fibre quantity and quality (lignins, cellulose, hemicelluloses, pectins and their equilibrium) and for water soluble vitamins normally synthesized by the flora. For these nutrients, the objective of the nutritionist is to conceive a diet which provides balanced carbohydrate sources for the flora, and to provide water soluble vitamins in case of flora malfunctioning (first step of any digestible trouble). Recommendations for the best digestive functioning make necessary the inclusion in diets of components with low or very low digestibility such as cellulose and lignins. It is well known that these recommendations are conflicting with the highest possible diet's digestibility or feed efficiency, if the health situation of the rabbits is perfect.

Thus we have separate the new proposed recommendations for rabbits nutrition in 2 groups (Table 1): the first corresponds to recommendations for an optimum feed efficiency and the second corresponds to recommendations which must be scrupulously respected in case of endangered digestive situation in the rabbitry.

Data included in the table were determined mainly according to the most recent reviews available in the literature (DE BLAS and VISEMAN, 1998; GIDENNE, 2000; FORTUN-LAMOTHE and GIDENNE 2003, LEBAS, 2003) and according to our own experience and literature knowledge. Despite the recent direct demonstration made by Gutierrez et al. (2003) of the noxious consequences of a high ileal flux of protein entering the caecum, no quantitative recommendation was made in relation with the optimum protein flux at the end of the small intestine. The reason is the absence of quantification of the optimum flux and the absence of characterisation of ieal digestibility of a sufficient number of feed ingredients. Such determination in the future would certainly represent an important step for the improvement of rabbit nutrition security. Recommendation for total sulphur amino-acid (TSSA) was made without proposition of a minimum level for methionine. Effectively a lot of years ago. COLIN (1978) clearly demonstrated that methionine can replace cystine in the TSAA and vice versa within the widest possible range of variation. Since that time, as far as we know, nobody has experimentally demonstrated that a minimum of methionine (or of cystine) must be provided in rabbits diets.

Table 1: Nutrients recommendation for rabbit feeding.

Type or period of		GRO	WTH	REPRODU	JCTION (1)	Single
Without any other		18 to 42	42 to75-80	Intensive	½ intensive	feed (2)
unit = g/kg as fed		days	days			ieeu (2)
				hest productivity		
Digestible Energy	(kcal / kg)	2400	2600	2700	2600	2400
Digestible Ellergy	MJoules/ kg	9,5	10,5	11,0	10,5	9,5
Crude Protein		150-160	160-170	180-190	170-175	160
Digestible Protein		110-120	120-130	130-140	120-130	110-125
ratio Digest. Protein /	(g / 1000 kcal)	45	48	53-54	51-53	48
Digestible Energy	(g / 1 MJoule)	10,7	11,5	12,7-13,0	12,0-12,7	11,5-12,0
Lipids		20-25	25-40	40-50	30-40	20-30
Amino acids						
- lysine		7,5	8,0	8,5	8,2	8,0
- sulfur amino acids (met	thio.+cyst.)	5,5	6,0	6,2	6,0	6,0
- threonine	• •	5,6	5,8	7,0	7,0	6,0
- tryptophan		1,2	1,4	1,5	1,5	1,4
- arginine		8,0	9,0	8,0	8,0	8,0
Minerals		-,-		-,-	-,-	-,-
- calcium		7,0	8,0	12,0	12,0	11,0
- phosphorus		4,0	4,5	6,0	6,0	5,0
- sodium		2,2	2,2	2,5	2,5	2,2
- potassium		< 15	< 20	< 18	< 18	< 18
- chloride		2,8	2,8	3,5	3,5	3,0
- magnesium		3,0	3,0	4,0	3,0	3,0
- sulphur		2,5	2,5	2,5	2,5	2,5
- iron (ppm)		50	50	100	100	80
- copper (ppm)		6	6	10	10	10
- zinc (ppm)		25	25	50	50	40
- manganese (ppm)		8	8	12	12	10
Fat-soluble Vitamins		·				
- vitamin A (UI / kg)		6 000	6 000	10 000	10 000	10 000
- vitamin D (UI / kg)		1 000	1 000	1000 (<1500)	1000 (<1500)	1000 (<1500)
- vitamin E (mg/kg)		≥30	≥30	≥50	≥50	≥50
- vitamin K (mg / kg)		1	1	2	2	2
vitaliiii K (liig / kg)	GROUPE 2 · R	•		th possible for ra		
Ligno-cellulose (ADF)	GROCILZIA	≥ 190	≥ 170	≥ 135	≥ 150	≥ 160
Lignins (ADL)		≥ 55	≥ 50	≥ 30	≥ 30	≥ 50
Cellulose (ADF – ADL)	≥ 130	≥ 110	≥ 90	≥ 90	≥ 110
ratio lignins / cellulose)	≥ 0,40	≥ 0,40	≥ 0,35	≥ 0,40	≥ 0,40
NDF (Neutral Detergent	Fiher)	≥ 320	≥ 310	≥ 300	≥ 315	≥ 310
Hemicelluloses (NDF –		≥ 120	≥ 100	≥ 85	≥ 90	≥ 100
ratio (hemicelluloses+pe		≤ 1,3	≤ 1,3	≤ 1,3	≤ 1,3	≤ 1,3
Starch	omoj / MDI	≤ 140	≤ 1,3 ≤ 200	≤ 1,5 ≤ 200	≤ 1,3 ≤ 200	≤ 160
Water soluble Vitamins		- 170	- 200	- 200		= 100
- vitamin C (ppm)		250	250	200	200	200
- vitamin C (ppm)		230	2	200	200	200
- vitamin B ₁ (ppm)		6	6	6	6	6
- nicotinamid (vitamin Pl	P) (ppm)	50	50	40	40	40
- pantothenic acid (ppm		20	20	20	20	20
- vitamin B ₆ (ppm)		2	2	2	2	2
- folic acid (ppm)		5	5	5	5	5
- vitamin B ₁₂ (ppm)		0,01	0,01	0,01	0,01	0,01
- choline (ppm)		200	200 average vearl	100	100	100

⁽¹⁾ For does, $\frac{1}{2}$ intensive production means a average yearly production of 40-50 weaned kits in the rabbitry, and an intensive production corresponds to a higher productivity (more than 50 kits /doe/year). (2) The single feed recommendation corresponds to a diet used for all rabbits in the rabbitry. It is a compromise between requirements of the different categories of rabbits.

For amino-acids in general, the correct recommendations would be done in term of digestible amino-acids as correctly proposed by the Madrid research staff (DE BLAS and MATEOS, 1998). But up to the moment no table for the feed's digestible amino-acids content is available for the rabbit. Furthermore, the correct recommendation

would be done in amino acids digestible at the end of ileum because of the previously mentioned effect of excessive proteic-N entering the caecum. Thus the inclusion of recommendations for digestible amino acids remains of theoretical interest. For this reason they were not included in the tables of recommendations.

For the other components, composition of raw materials usable in a feed's formulation respecting the table 1 recommendations could be found for example in the recent tables of composition published by SAUVANT et al. (2002). These tables describe most of feed resources in use in Western European countries, for the gross composition including the fibre fractions, but also composition in amino acids, macroand micro-minerals, vitamins, fatty acids, and nutritional value for the farm animals, rabbits included. When available, for rabbits are indicated the digestible and metabolizable energy content and digestibility coefficient of energy and nitrogen. An other important information source for raw materials, usable in most of the developing countries is AFRIS, the FAO data basis on Animal Feed Resources Information System. AFRIS is available on Internet with free access (AFRIS, 2004). For an impressive list of raw materials are given some explanations on the product (origin and possibilities of utilisation), data on gross composition, digestibility (mainly by ruminants), amino acids composition and a list of some references (with abstract available on line) on the use of this material, sometimes by rabbits. In addition this data basis is available in English but also in French, Spanish, Arabic and Chinese language.

FEED INGREDIENTS UTILISATION

Methodology for the estimation of the nutritive value of feed ingredients

All the analysis described in composition tables are useful to search the nutrients mentioned in recommendations. They are used by nutritionists with the help of a computer to know if a specific raw material is able or not to provide such or such nutrient mentioned in the recommendations, and how to mix different raw materials to obtain a balanced diet. But raw ingredient components are more complex than the description made through a list of nutrients, even if the list is very long. Some molecules present in a raw material may have consequences on the animal physiology, that of rabbits in particular. Some of these molecules can be tolerated if their final level in the complete diet is not too high e.a. case of mimosine content in diets with Leucaena leucocephala (Szyszka et al., 1985), for other molecules, rabbits may prefer an intermediate concentration, e.g. for the saponin concentration in diets with lucerne (AUXILIA et al., 1983). For these raw materials, the "key" molecules (mimosine or saponin) are known. Then a chemical determination can be done before utilisation and the result may be included in the computer for formulation. But for many raw materials, such components are not known. But that does not mean they don't exist and that they have no effect.

Up to now the only reliable method to know if a raw material can be used for rabbit nutrition is to ask rabbits themselves. The most common method consists to include graded levels of the studied raw material in rabbits ration, and to measure the performance. But the total of the ration remains always at 100%; then if one ingredient is introduced at graded levels, one or some others ingredients must be

withdrawn. For this reason many published experiments could be interpreted symmetrically from the reverse side as a progressive reduction of the incorporation level of another raw material. Which one is responsible of the observed variation of the performance? the increase of the first or the decrease of the second?

In many cases, for a supposed easy future interpretation, the studied material is introduced in substitution to one unique ingredient or to the basal diet. In the later case if the basal diet (or control diet) is balanced according to rabbit's requirements, at the highest level of substitution the experimental diet is not balanced. Then, is the resulting performance a consequence of the presence of the studied ingredient or only a consequence of the ration imbalance?

We consider that there is not a perfect solution. Nevertheless, a reliable synthetic position may be established after a critical analysis of the different works published on the nutritive value of the studied raw material.

Revue of literature on raw material studies, methodological aspects

To make possible a reliable synthetic position, we have analysed a great number of works on raw material evaluation, published during the last 30 years (1973-2003). The data basis was obtained through a CAB International interrogation on Internet and through the analysis of all communications presented during the successive World Rabbit Congresses (1st to 7th) or during the successive French rabbit Days (1st to 10th). The final list contains 387 publications corresponding to 542 studies of diets with various levels of a raw material: most generally one control without the studied material and 1 to 5 levels of incorporation. This list is not exhaustive, but represents probably more than 90% of the literature available. The CAB International interrogation has given an abstract for each reference. Full text and abstract were available in the CD Rom of the World Rabbit Congresses (available at the WRSA office) or in the CD Rom of the French rabbit Days (available at the ITAVI office in Paris).

Most of studies were made with growing rabbits (91.7%). Breeding does were used for 5.4% of the experiments and 1.5% of the studies were made using angora wool production as the main criterion for evaluation or using various other physiological criteria. In the experiments with growing rabbits we have given priority to the growth rate observed during the whole duration of the study, to establish the highest acceptable level of incorporation of the raw material. But in many cases the authors have also determined the feed efficiency, the digestibility of the experimental diets, the carcass characteristics, and sometime the meat quality, mortality rate or blood parameters. In the following tables (3 to 15), when the highest acceptable level of incorporation is identical to the highest level studied, it means that at this level the growth rate (more generally the performance) was not significantly different from that observed with the control diet, or was significantly better. When the highest acceptable level is an intermediate level it means that at this level the performance is higher or equivalent to that observed with the control, and that a higher level induced a significant reduction of the performance. When the highest acceptable level is 0%, it means that at all incorporation levels the performance of the experimental rabbits was significantly lower than that of the control. Sometimes the reason was a real

contre-performance, and the raw material must be discarded from rabbit nutrition. But in many other cases, the lower performance observed after introduction of the raw material was only the consequence of the imbalance created by this introduction. In this case, a careful analysis of the other studies made on the same raw material is necessary to establish a correct opinion. Nevertheless, one of the questions which remains frequently unanswered is the following: was the raw material studied in different publications effectively the same? Only a comparative analysis of the different publications made in great detail can give a beginning of answer. It's the occasion for each of us to exercise his or her critical sense.

Raw materials studied as only feed

Some raw materials were used as the only feed source in some experiences (table2). When some growth or adult live weight maintenance were observed (marked "OK") it means that the studied raw ingredient had no important toxic compound and nutrients are relatively balanced. The direct analysis of the publication reveals the

Table 2. Raw ingredients studied as only feed.

Ingredients	type of rabbit	Maintenance or growth	Authors
Arachis pintoi + Pennisetum purpureum	growing	OK	Nieves et al., 1996
arrowroot (Maranta arundinacea) forage	growing	OK	Erdman, 1986
bermuda grass fresh (Cynodon dactylon)	adult	no	Deshmukh et al., 1989
bermuda grass fresh (Cynodon dactylon)	adult	no	Deshmukh et al., 1993a
berseem fresh (Trifolium alexandrinum)	adult	OK	Deshmukh et al., 1989
berseem fresh (Trifolium alexandrinum)	adult	OK	Deshmukh et al., 1990
broom grass (<i>Thysanolaena maxima</i>) fresh or dried	growing	OK	Rohilla et al., 2000b
cabbage leaf wastes	growing	OK	Prawirodigdo et al., 1985
Grewia optiva leaves	adult	OK	Deshmukh et al., 1989
groundnut haulms	growing	OK	Ngodigha et al., 1994
guinea grass (Panicum maximum)	growing	no	Bamikole et al., 1999
lucerne (100%)	growth	OK	Perez et al., 1994
lucerne (96%)	growing or pregnant	OK	Pascual et al., 2002
lucerne (99.5%+NaCl)	growing	OK	Perez et al., 1998
maize whole grain soaked overnight	adult	no	Prasad et al., 1996
mulberry fresh leaves (Morus alba)	adult	OK	Deshmukh et al., 1989
mulberry fresh leaves (Morus alba)	adult	OK	Deshmukh et al., 1993b
oats (green, preflowering)	adult	OK	Deshmukh et al., 1989
rabbit faeces dried (98%+minerals) !!!!!!	growing	OK (!?)	Fekete et al., 1985
robinia (Robinia pseudoacacia) leaves	growing	OK	Singh et al., 1997a
robinia (Robinia pseudoacacia) leaves	growing	OK	Singh et al., 1999
Stylosanthes hamata cv. Verano	growing	no	Bamikole et al., 1999
sweet potato tops (dehydrated)	growing	OK	Abu et al., 1999
wheat bran (98.75%)	growing	OK	Robinson et al., 1986

real performance which is an indirect estimation of the nutritional balance of the raw material. When the growth or maintenance column is marked "no", it means that this raw material was nutritionally completely imbalanced or contained a toxic compound.

To be as complete as possible, we have mentioned the work of FEKETE *et al.* (1985) where rabbit faeces were used as quasi only feed for rabbits (98% inducing a growth rate of 12 g/day), but in no way we will recommend the inclusion of faeces in the rabbit nutrition because of the corresponding uncontrolled sanitary risk.

Utilisation of cereals and cereal by products

To interpret correctly all experiences made on progressive introduction of cereals in rabbit rations (table 3) it is necessary to search the cereal in the "ingredient" column as well as in the "substitution" column. Most of the cereals and by-products can clearly be used up to 40-50%. The main limitations are those associated with diets nutritional balance, specially the maximum starch when rabbitry health is not optimum.

Table 3: Experiments on the incorporation of cereals and cereal by-products in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
barley (hydroponic, green, 10 days)	2	~40%	~40%	basal diet	growth	Kriaa et al., 2001
barley grain	2	100% of maize	100% maize	maize	growth	Akram <i>et al.</i> , 1989
barley grain	2	100% of 3 cereals	100% of 3 cereals	barley, maize, triticale	growth	Lanza et al., 1986
barley grain	2	100% cereals	100% cereals	barley, wheat triticale	growth	Sinatra et al., 1987
barley grain	2	100% of cereals	0%	oats	growth	Struklec et al., 1995
barley grain	2	46%	46%	3 cereals	growth	Seroux, 1984a
barley grain, flaked	2	42%	0%	barley	growth	Seroux, 1989b
barley grain, flaked	2	42%	42%	barley	growth	Seroux, 1982
barley radicle	3	10%	10%	barley	growth	Ibrahim <i>et al.</i> , 1999
barley roots (by-product malt industry)	2	8%	8%	-	growth	Bagliacca et al., 1987
buckwheat (Fagopyrum esculentum)	5	60%	60%	maize & wheat mill run	growth	Tor-Agbidye et al., 1990
hard wheat bran	2	56%	56%	barley & soybean m.	growth	Berchiche et al., 2000
hard wheat middlings	2	23%	23%	barley & soybean m.	growth	Berchiche et al., 2000
maize grain	2	100% of wheat	100% of wheat	wheat	growth	Cossu et al., 2002
maize grain	2	100% of 3 cereals	100% of 3 cereals	barley, maize, triticale	growth	Lanza et al., 1986
maize grain	2	100% cereals	0%	oats	growth	Struklec et al., 1995
maize grain	2	39%	39%	3 cereals	growth	Seroux, 1984a
maize grain, flaked	2	38%	38%	maize	growth	Seroux, 1982
maize offals	2	34%	34%	maize	growth	Onifade et al., 1993
					Cont	tinuation on next page =>

Table3: utilisation of cereals	and cere	al by-prodi	ucts (contin	uation)		
maize offals	2	100% of	100% of	maize	arazzeth	Uko <i>et al.</i> , 1999
maize offais	2	maize	maize	maize	growth	Oko et at., 1999
maize starch	3	14%	0%	wheat straw	breeding	Lebas et al., 1996
millet offals	2	100% of	100% of	maize	growth	Uko <i>et al.</i> , 1999
		maize	maize	maize	growth	OKO et at., 1999
Milurex (byproduct of wheat starch production)	5	40%	20%	basal diet	growth	Perez et al., 1997
oats grain	2	100% of	100% of	maize	growth	Akram <i>et al.</i> , 1989
oats gram		maize	maize		growth	ARiam et at., 1707
		100%	100%	barley &		
oats grain	2	barley &	barley &	sunflower	growth	Jensen et al., 1989
		sunfl. m.	sunfl. m.	meal		
rice (broken rice)	2	40%	20%	maize	growth	Oanh, 1983
rice bran	5	92.5%	60%	-	growth	Raharjo et al., 1988
rice bran	2	40%	20%	maize	growth	Oanh, 1983
rice feed meal	2	40%	40%	maize	growth	Oanh, 1983
rice-polish	3	15%	15%	maize	growth	Bhatt, 2000
sorghum grain	5	56%	56%	maize	growth	Carregal et al., 1980b
sorghum grain	4	20%	15%	barley & wheat	growth	Demchenko et al., 1985
	2	100% of	100% of	maize offals		
sorghum offals		maize	maize		growth	Uko et al., 1999
		offals	offals			
triticale grain	2	100% cereals	100% cereals	barley, wheat, triticale	growth	Sinatra et al., 1987
triticale grain	2	100% of 3 cereals	100% of 3 cereals	barley, maize, triticale	growth	Lanza <i>et al.</i> , 1986
triticale grain	2	30%	30%	barley	growth	Bonanno et al., 1990
wheat bran	3	~40%	~40%	maize	growth	Singh <i>et al.</i> , 1997b
wheat bran	3	20%	20%	lucerne	growth	Gippert et al., 1988
wheat grain	2	~46%	~46%	maize	growth	Nizza <i>et al.</i> , 1997
				barley,		,
wheat grain	2	100% cereals	100% cereals	triticale, wheat	growth	Sinatra et al., 1987
wheat grain	2	42%	42%	3 cereals	growth	Seroux, 1984a
wheat grain, flaked	2	41%	41%	wheat	growth	Seroux, 1982
wheat grain, flaked	2	41%	41%	wheat	growth	Seroux, 1989a

Carbohydrates source of energy, other than cereals

Although in numerous rabbit's rations cereals are the main source of digestible energy, many other ingredients can provide also starch (e.g. cassava roots) or other highly digestible carbohydrates (e.g. beet or citrus pulp, molasses). Many of such raw materials are listed in the table 4, and most of them were introduced in substitution to cereals. A special attention should be made the technological quality of the raw material studied and to the exact origin of the product. For example citrus pulp is frequently proposed and used without botanical indication, but citrus pulp from lemon and from orange are not necessary equivalent. The same type of citrus pulp (orange) may also be positively evaluated in one experiment and negatively in a second (LETO et al., 1984) probably in relation with the batch of citrus used.

Table 4. Experiments on the incorporation of carbohydrates sources of energy other than cereals, in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
ajar seed kernel (Lagestroemia flos-regina)	4	27%	9%	cereals & wheat bran	growth	Saikia et al., 2000
Amaranthus caudatus (residual pulp from leaf fractionation)	4	30%	10-20%	maize	growth	Omole et al., 1979
amaranthus seed (<i>Amaranthus hypochondriacus</i>)	4	40%	40%	-	growth	Reddy et al., 1993
Azadirachta indica = neem, seeds	4	30%	20%	-	growth	Fajinmi <i>et al.</i> , 1990
banana fresh fruits, green	2	32% DM	32% DM	basal biet	growth	Gidenne, 1985a
beet molasses stillage (condensed)	2	5%	5%	-	breeding	Cavani <i>et al.</i> , 1987
beet pulp (sugar beet pulp)	6	25%	25%	=	growth	El-Zeiny et al., 1998
beet pulp (sugarbeet pulp)	2	15%	15%	lucerne	growth	Evans et al., 1983
beet pulp (sugarbeet pulp)	3	30%	15%	barley	growth	Garcia et al., 1992
beet pulp (sugarbeet pulp)	4	50%	15%	barley	growth	Garcia et al., 1993
beet pulp (sugarbeet pulp)	4	30%	10%	-	growth	Jensen et al., 1992
beet pulp (sugarbeet pulp)	3	15%	8%	maize	growth	Battaglini <i>et al.</i> , 1978a
beet pulp (sugarbeet pulp)	2	20%	20%	cereal grains	growth	Skrivanova <i>et al.</i> , 1996
beet pulp (sugarbeet pulp))	2	15%	15%	lucerne or barley	growth	Trocino et al., 1999
beet pulp (sugarbeet pulp)	4	30%	30%	wheat grain& straw	growth	Franck et al., 1980
beet pulp (sugarbeet pulp)	3	50%	50%	barley	growth	Cobos et al., 1995
beet pulp (sugarbeet pulp))	3	100% of lucerne	0% of lucerne	lucerne	growth	El-Adawy et al., 2000
beet pulp (dried) + 35%molasses	4	30%	15-20%	-	growth	Jensen et al., 1992
beet pulp (molassed sugarbeet pulp)	4	20%	20%	-	growth	Colaghis et al., 1983
beet root slices	3	25%	25%	lucerne	growth	Gippert et al., 1988
buffalo gourd (<i>Cucurbita foetidisima</i>) dried root meal	4	30%	30%	sorghum	growth	Morales Zuñiga, 1980
buffalo gourd (<i>Cucurbita</i> foetidisima) dried root meal	4	30%	30%	sorghum	breeding	Morales Zuñiga, 1980
cane molasses concentrate	2	5%	5%	concentrate	growth	Cavani et al., 1988b
cassava peel meal	2	31%	0%	maize	growth	Onifade et al., 1993
cassava peel meal	4	45%	15%	maize	growth	Okeke et al., 1986
cassava peel meal	2	100% of maize	100% of maize	maize	growth	Agunbiade et al., 1999
cassava peel meal	3	40%	40%	maize	growth	Omole et al., 1981a
cassava peel meal	4	100% of maize	50% of maize	maize	growth	Esonu et al., 1993
cassava peel meal	2	100% of maize	100% of maize	maize	growth	Agunbiade et al., 2001
cassava peel, ensiled meal	4	45%	30%	maize	growth	Okeke et al., 1986
cassava root meal	2	25%	25%	basal diet	growth	Ratnakumar et al., 1992
cassava root meal	4	50%	50%	barley	growth	Radwan et al., 1989
cassava root meal	2	22%	22%		growth	El-Gendy, 1994
					Cont	inuation on next page =>

Table 4 : Carbohydrates source	e of ene	rgy other th	an cereals	(continuation	1)	
cassava root meal	2	100% of maize	100% of maize	maize	growth	Ikurior et al., 1998
cassava root meal	2	20%	20%	barley	meat quality	Soliman, 1994
cassava root meal	4	45%	45%	-	breeding	Eshiett et al., 1980
cassava root meal	4	45%	45%	-	growth	Eshiett et al., 1980
cassava root meal (unpeeled)	2	31%	31%	maize	growth	Onifade et al., 1993
cassava waste meal	5	100% of maize	100% of maize	maize	growth	Abu et al., 1996
citrus (lemon) pulp	2	20%	0%	maize	growth	Leto et al., 1984
citrus (lemon) pulp	2	20%	20%	barley	growth	Alicata et al., 1985
citrus (orange) pulp	4	18%	18%	maize	growth	Leto et al., 1984
citrus (orange) pulp	2	20%	0%	maize	growth	Leto et al., 1984
citrus pulp	4	25%	25%	_	growth	Leon et al., 1999
citrus pulp	6	75%	45%	basal diet	growth	Martinez Pascual <i>et al.</i> , 1980
fodder beet roots (fresh)	3	~20%	~20%	concentrate	growth	Bassuny et al., 1999
garri sievate (residue of grated cassava fermented, dried and sieved for garri production)	3	30%	20%	maize	growth	Ngodigha et al., 1995
molasse (sugar cane molasse)	3	10%	5-10%	basal diet	growth	Sanchez et al., 1984
oak acorn (Quercus coccifera)	2	20%	20%	maize	growth	Nowar <i>et al.</i> , 1994
olive pulp	4	30%	30%	-	growth	Tortuero et al., 1989
plantain peel (<i>Musa</i> cv) sun dried	4	100% of maize	66% of maize	maize	growth	Fanimo et al., 1996
potatoes starch	3	14%	14%	wheat	growth	Pinheiro et al., 2000
potatoes steamed, dried	3	30%	30%	basal diet	growth	Kuzniewicz et al., 1979
potatoes steamed, dried	3	22%	22%	cereals & bran	growth	Wojsyk-Kuzniewicz et al., 1981
radish (<i>Raphanus sativus</i>) seed raw or autoclaved	3	40%	0%	wheat & soybean m.	growth	Sanchez et al., 1984
Samanea saman, whole pods, autoclaved	2	10%	10%	-	growth	Oduguwa et al., 2000
sweet potato meal.	5	100% of maize	100% of maize	maize	growth	Agwunobi et al., 1997
sweet potato root meal	6	50%	20%	sweet potato tops	growth	Abu et al., 1999
tager-nut (<i>Cyperus rotundus</i> L.)	6	100% of maize	60% of maize	maize	growth	Bamgbose et al., 1997
tall fescue seeds (Festuca arundinacea)	5	80%	80%	maize (?)	growth	Tor-Agbidye et al., 1992
tannia cocoyam tuber meal (Xanthosoma sagittifolium)	5	100% of maize	100% of maize	maize	growth	Agwunobi et al., 2000
vinasse (high in yeast cell walls)	3	8%	8%	molasse & beet pulp	growth	Maertens et al., 1994

Fat use in rabbit nutrition

The different fats were frequently studied in addition to a basal diet or in substitution to one of the ingredient in order to increase the digestible energy of the diet (table 5). In many other studies one type of fat was introduced in substitution to another source of fat. In later case the conclusion is that all the oils can be changed from one to the

other. In some experiments the highest substitution level was very high: 8-9% and even 16% (HEMID *et al.*, 1995; BEYNEN, 1988), but with such levels it is impossible to obtain pellets of acceptable quality.

Table 5.: Experiments on fat incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	Substituted mainly to	Evalua- tion on	Authors
beef tallow	3	6%	6%	soya oil	growth	Fernandez et al., 1992
beef tallow	2	3%	3%	-	growth	Fernandez et al., 1996
beef tallow	3	8%	4%	_	growth	Raimondi et al., 1976
beef tallow	3	8%	4%	maize	growth	Falcão-e-Cunha <i>et al.</i> , 1996b
beef tallow	2	8.5%	8%	barley	breeding	Fernandez-Carmona <i>et al.</i> , 1996
calcium soap	3	6%	6%	-	growth	Fernandez Carmona <i>et al.</i> , 1994
groundnut oil	2	5%	5%	maize oil	growth	Omole, 1979
groundnut oil	3	8%	4%	-	growth	Raimondi et al., 1976
maize oil	3	8%	8%	basal diet	growth	King, 1981
maize oil	4	16%	16%	maize starch	growth	Beynen, 1988
oleins	3	6%	3%	soya oil	growth	Fernandez et al., 1992
oleins	2	3%	3%	-	growth	Fernandez et al., 1996
palm oil	2	7%	7%	soya oil	growth	Kessler et al., 1993
palm oil	2	5%	5%	maize oil	growth	Omole, 1979
palm oil	4	9%	9%	basal diet	growth	Hemid et al., 1995
palm oil soapstock, acidulated	2	1%	1%	maize oil	growth	Abd-El-Rahim <i>et al.</i> , 1994
palm oil soapstock, acidul.	2	1%	1%	basal diet	breeding	Tawfeek et al., 1994
poultry fat	4	9%	5%	basal diet	growth	Hemid et al., 1995
rapeseed oil	3	9%	9%	no added fat	breeding + growth	Christ, 1999
rapeseed oil	2	7%	7%	soya oil	growth	Kessler et al., 1993
soybean oil	2	3%	3%	-	growth	Fernandez et al., 1996
soybean oil	2	4.50%	4.50%	no added fat	breeding + growth	Christ, 1999
soybean oil	3	6%	6%	basal diet	growth	Meirelles et al., 1979
soybean oil	3	4%	4%	-	growth	Carregal et al., 1980a
sunflower oil	2	3%	3%	wheat straw	breeding	Lebas et al., 1996
sunflower oil	2	6%	6%	starch	growth	Falcão-e-Cunha <i>et al.</i> , 2000
vegetable oils (mixed waste from edible oil refining)	2	1%	1%	maize oil	growth	Abd-El-Rahim <i>et al.</i> , 1994

Full fat oleaginous grains

The increase of diet's lipid content – and generally of the digestible energy content could be done with the incorporation of pure fats as studied in the previous section, but it is also possible with the use of oleaginous grains. In this case the raw material provides non only lipids but also protein. When the diets were balanced, all tested oleaginous grains were considered as usable at the highest tested level *i.e.* up to 30-40% (table 6). Nevertheless, a special mention must be done for the sunflower seeds. The lower performance observed with 30% of full-fat seeds is surprising because when seeds are separated in 2 parts, sunflower oil and sunflower meal, both parts can be used without restriction other than the diet's balance (tables 5 and 7). Thus we suggest that in the 2 experiments with sunflower seeds mentioned in table 6, some pollutant had reduced the acceptability of seeds (BALOGUN *et al.*, 1991; MESINI, 1994). However some additional experiments with this raw material should be welcome.

Table 6. Experiments on oleaginous-seeds incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
cotton seeds whole, extruded	2	43%	43%	soybean m.	growth	Johnston et al., 1984
linseed, whole seed	2	8%	8%	concentrate	meat quality	Cavani et al., 2003
linseed, extruded whole seed	2	39%	39%	soybean m.	growth	Johnston et al., 1984a
rapeseed grain (00 cultivar)	2	10%	10%	cereals	growth	Seroux et al., 1982
safflower seeds, extruded	2	34%	34%	soybean m.	growth	Johnston et al., 1984a
soya lipids (oil + full-fat soya)	2	~7%	~7%	barley	breeding	Fernandez-Carmona <i>et al.</i> , 1996
soybean seeds (full-fat soya, extruded)	2	20%	20%	soybean m.	growth	Johnston et al., 1984a
soybean seeds (full-fat soya, heat-treated)	3	6%	6%	soybean m.	growth	Cavani et al., 1996
sunflower seeds (full-fat)	4	30%	20%	-	growth	Balogun et al., 1991
sunflower seeds (whole with husks)	4	30%	<10%	maize & oil	growth	Mesini, 1994

Oil cakes and meals

When the oil is removed from oleaginous seeds, generally for human utilisation, the remaining part is protein rich and may be used for animal nutrition. For rabbits as for the other animals, the reference meal is the toasted soybean meal. Not less than 15 oil cakes were studied. Most of them can be introduced at 15-20% or more, and they can provide up to 60% of the diet's protein without problem.

Table 7. Experiments on oil cakes (meals) incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	Substituted mainly to	Evalua- tion on	Authors
bambara groundnut toasted meal (<i>Voandzeia</i> subterranea)	5	25%	25%	-	growth	Joseph et al., 2000
cottonseed meal	2	24%	0%	poultry offals & wheat bran	growth	Fotso et al., 2000
cottonseed meal	2	43%	<43%	soybean m.	breeding	Johnston et al., 1985
cottonseed meal	2	20%	20%	soybean meal	semen quality	McNitt et al., 1982
cottonseed meal	2	10%	10%	groundnut cake	growth	Prasad <i>et al.</i> , 1998
cottonseed meal	2	60% of the total protein	60% of the total protein	groundnut cake	angora	Singh et al., 1987
cottonseed meal (expeller extracted)	3	17%	17%	soybean meal	growth	McNitt et al., 1982
cottonseed meal (pre-press solvent extracted)	3	16%	16%	soybean meal	growth	McNitt et al., 1982
groundnut cake	2	~20%	~20%	sunflower meal	growth	Aduku <i>et al.</i> , 1988
groundnut cake	2	24%	0%	fish meal	growth	Omole et al., 1982
hempseed oil cake (Canabis sativa)	3	30%	30%	sunflower meal	growth	Lebas et al., 1988
linseed meal	2	11%	0%	soybean m.	growth	Gippert, 1980
linseed meal	2	60% of diets protein	60% of diets protein	groundnut cake	angora	Singh <i>et al.</i> , 1987
meadow foam meal (Limnanthes alba)	3	40%	40%	soybean m.	growth	Throckmorton <i>et al.</i> , 1981
mustard cake	2	23%	23%	groundnut cake	growth	Prasad et al., 1998
mustard cake (urea/NH ₃ treated or not)	3	100% of ground- nut meal	100% of ground-nut meal	groundnut cake	angora	Gowda <i>et al.</i> , 1997
mustard cake	2	60% of diets protein	60% of diets protein	groundnut cake	angora	Singh <i>et al.</i> , 1987
neem kernel meal (<i>Azadirachta indica</i>) (urea/NH ₃ or NaOH treated)	3	100% of ground- nut meal	100% of ground- nut meal	groundnut cake	angora	Gowda et al., 1997
neem kernel meal (<i>Azadirachta indica</i>) (urea/NH ₃ or NaOH treated)	3	100% of ground- nut meal	100% of ground- nut meal	groundnut cake	growth	Gowda et al., 2000
neem seed kernel meal (Azadirachta indica)	4	20%	10%	groundnut cake	growth	Vasanthakumar <i>et al.</i> , 1999
Nigela sativa meal	3	10%	0%	basal diet	growth	Nasr et al., 1996
olive oil cake	3	23%	23%	soybean m.	growth	Ben Rayana et al., 1994
olive oil cake	2	30%	30%	lucerne	growth	Chaabane et al., 1997
olive oil cake, ± kernelled palm kernel meal	2 2	30% ~40%	30% ~40%	sulla hay sunflower	growth growth	Leto <i>et al.</i> , 1981 Aduku <i>et al.</i> , 1988
				meal	,	,
rapeseed meal rapeseed meal	2 2	12% 20%	12% 20%	soybean m.	growth breeding	Gippert, 1980 Lebas <i>et al.</i> , 1982
rapeseed mear		20/0	20/0	soyucan m.		ation on the next page =>

Table 7. Oil cakes and meals (continu	ation N°2)				
rapeseed meal	5	20%	20%	soybean m.	growth	Scapinello et al., 1996b
rapeseed meal	4	18%	18%	soybean m.	growth	Colin et al., 1976
rapeseed meal (non toasted)	2	15%	15%	sunflower meal	breeding	Lebas, 1978
rapeseed meal (toasted)	2	15%	15%	sunflower meal	breeding	Lebas, 1978
rapeseed meal (Tower)	4	100% of soybean meal	100% of soybean meal	soybean meal	growth	Throckmorton et al., 1980
rapeseed meal, dehulled	2	20%	20%	soybean m.	breeding	Lebas et al., 1982
rapeseed oilmeal (low in erucic acid)	2	100% sunflower meal	100% sunflower meal	sunflower meal	growth	Lebas et al., 1977
rapeseed protein concentrate	2	7%	7%	silkworm chrysalid & soybean m.	growth	Liu <i>et al.</i> , 1987
safflower meal	2	60%	60%	lucerne	growth	Harris et al., 1980
soya protein concentrate	2	~30% diets protein	~30% of diets proteins	soybean meal	growth	Gutierrez et al., 2003
soybean meal	2	30%	30%	groundnut cake	growth	Prasad et al., 1998
soybean meal	3	10%	10%	basal diet	growth	Nasr et al., 1996
sunflower meal	4	24%	16%	groudnut cake	growth	Bhatt et al., 1999
sunflower meal	2	15%	15%	soybean m.	growth	Battaglini et al., 1977
sunflower meal	2	10%	10%	soybean m.	growth	Gippert, 1980
sunflower meal	2	~30% of diets proteins	~30% of diets proteins	soybean meal	growth	Gutierrez et al., 2003
sunflower meal	5	21.6%	21.6%	-	growth	Ismail et al., 1999

Proteic seed (peas, beans ...)

Leguminous seeds with medium to low lipid content (less than 10% in general) and some similar seeds may be also sources of protein for rabbits. Experiments of utilisation were conducted with not less than 18 types of proteic seeds (table 8). Some of the seeds can be used only if different components of the seed are removed by an adequate treatment (e.g. debittered *Lupinus mutabilis* - JOHNSTON et al.,1989). For some others, the presence of a noxious compound is the main factor limiting the incorporation in rabbit's ration (e.g. presence of mimosine in the *Leucaena leucocephala* seeds – AWOSANIA et al., 1996). For some other seeds such *Lathyrus cicera* the antinutritional factors which reduces feed intake and growth rate were not

Table 8. Experiments on proteic seeds (beans, peas ...) incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level	Accep- table	substituted mainly to	Evalua- tion	Authors
	Levels	studied	level	mainly to	on	
African locust-bean (Parkia			27%	oil cakes &		
filicoidea) (raw, autoclaved	4	27%	water	maize	growth	Balogun <i>et al.</i> , 1983
or water extracted)			extracted	maize		
beans (Phaseolus vulgaris)	2	40%	0%	lucerne &	growth	Sanchez et al., 1983
raw or autoclaved pinto beans	2			soybean m.	growin	Sanchez et at., 1703
bitter lupin seeds (<i>Lupinus</i>		100%	100%	soybean		
mutabilis) debittered seeds	2	soybean	soybean	meal	growth	Johnston et al., 1989
mulabilis) debittered seeds		m.	m.	ilicai		
bitter lupin seeds (Lupinus	2	29%	29%	soybean	growth	Johnston et al., 1988
mutabilis) debittered	2	29/0	29/0	meal	growin	Johnston et at., 1988
bitter lupin seeds (Lupinus	2	29%	0%	soybean	amazzeth	Johnston et al. 1000
mutabilis) raw or toasted	2	29%	0%	meal	growth	Johnston et al., 1988
,		100%	0%	a a ile		
bitter lupin seeds (<i>Lupinus</i>	2	soybean	soybean	sojbean	growth	Johnston et al., 1989
mutabilis) raw or toasted		meal	meal	meal	Ü	,
1:1 (6:)	_			soybean m.	.1	11: 1 1001
chickpeas (Cicer arietinum)	2	20%	< 20%	& barley	growth	Alicata et al., 1991
chickpeas (Cicer arietinum)	3	20%	20%	basal diet	growth	Alicata et al., 1992
chickpeas (Cicer arietinum)	3	20%	20%	soybean m.	growth	Alicata et al., 1993
•				wheat &		
chickpeas (Cicer arietinum)	3	20%	20%	soybean m.	growth	Lebas <i>et al.</i> , 1988
		100%	100%	soyucan m.		
chickpeas (<i>Cicer arietinum</i>) =	2	barley	barley	harlari	amarrith	Sootman at al. 1002
Bengal gram	2	-	-	barley	growth	Sastry <i>et al.</i> , 1982
honor hoon (Winin faha) soods	4	protein	protein 37%		41	Danahiaha at al 1000
horse bean (Vicia faba) seeds	4	37%		soybean m.	growth	Berchiche et al., 1988
horse bean (Vicia faba) seeds	4	37%	26.50%	soybean m.	growth	Berchiche et al., 1995
horse bean (Vicia faba) seeds	2	30%	30%	soybean m.	growth	Berchiche et al., 1999
, , , , , , , , , , , , , , , , , , , ,				& maize		·
horse bean (Vicia faba) seeds	3	20%	20%	soybean m.	growth	Colin et al., 1976
horse bean (Vicia faba) seeds	2	10%	10%	soybean m.	growth	Maitre <i>et al.</i> , 1990
horse bean (Vicia faba) seeds	4	30%	30%	soybean m.	growth	Seroux, 1984b
jack bean (Canavalia	3	20%	20%		growth	Esonu <i>et al.</i> , 1996
ensiformis) cooked seeds	3	2070	2070	_	growin	Esolid et at., 1990
jack bean (Canavalia	3	20%	10%		growth	Esonu <i>et al.</i> , 1996
ensiformis) raw seeds	3	20%	1070	-	growth	Esonu <i>et at.</i> , 1996
jack bean (Canavalia	2	200/	200/		41	El Dahim 1006
ensiformis) raw seeds	3	28%	28%	-	growth	El-Rahim, 1996
jack bean (Canavalia	2	200/	200/		41.	El D-1: 1006
ensiformis) autoclaved seeds	2	28%	28%	-	growth	El-Rahim, 1996
Jack bean (Canavalia	_	2007	10.000/	.1 1	.4	D 1 1 . 1 2000
ensiformis) boiled seeds	4	30%	10-20%	oil cakes	growth	Bamikole et al., 2000a
Job's tears (Coix lachryma)	_	2021	2021			0 1 100-
corticated grain	3	30%	30%	-	growth	Gupta et al., 1995
		1000	4000	soybean m.		Falcão-e-Cunha et al.,
Latyrus cicera seeds	4	40%	10%	& oat	growth	1996a
Leucaena leucocephala				22 041		
seeds, roasted	4	30%	10%	-	growth	Awosanya et al., 1996
mung beans (<i>Phaseolus</i>						
aureus = Vigna radiata)	5	32%	24%	soybean m.	growth	Amber, 2000
pea (<i>Pisum sativum</i> variety						
Frijaune)	3	18%	18%	soybean m.	growth	Castellini et al., 1991
111Jaune)			<u> </u>		Contine	ation on the west week ->
Í					Continu	ation on the next page =>

Table 8. Proteic seeds (continu	uation)					
pea (Pisum sativum)	3	22%	22%	soybean m. & maize	growth	Colin et al., 1976
pea (Pisum sativum)	2	100% soybean meal	100% soybean meal	soybean meal	growth	Johnston et al., 1989
pea (Pisum sativum)	2	30%	30%	soybean m.	growth	Seroux, 1984b
pea (Pisum sativum) spring pea	2	21%	21%	wheat & soybean m.	breeding	Seroux, 1988
pea (Pisum sativum) toasted	2	100% soybean meal	100% soybean meal	soybean meal	growth	Johnston et al., 1989
pigeon pea (Cajanus cajan)	2	20%	0%	-	growth	Nieves et al., 1995
Prosopis chilensis algaroba fruit dried	3	29%	29%	bran & oil cake	growth	Caro et al., 1991
quinoa grain (<i>Chenopodium</i> quinoa)	4	30%	30%	maize & fish meal	growth	Crizon Navarrete <i>et al.</i> , 1991
Samanea saman, whole pods	2	10%	10%	-	growth	Oduguwa et al., 2000
sweet lupin (Lupinus albus)	3	16%	8%	-	growth	Battaglini et al., 1991
sweet lupin (Lupinus albus)	2	10%	10%	soybean m.	growth	Maitre et al., 1990
sweet lupin (Lupinus albus)	4	21.5%	21.5%	soybean m.	growth	Sarhan, 1999
sweet lupin (Lupinus albus)	4	21%	21%	soybean m.	growth	Seroux, 1984b
<i>Vicia sativa</i> = vetch, seeds	4	30%	10%	-	growth	Yalcin et al., 2003
Vigna unguiculata cowpea	2	50%	50%	wheat bran	growth	Aduku et al., 1986

identified (FALCÃO-E-CUNHA *et al.*, 1996). The consequence is that up to now, the only solution is to discard this protein source from rabbit nutrition.

Yeasts, mycelium, leaf protein and other protein concentrates

The only raw material of this heterogeneous group, which cannot be used in rabbit nutrition is the raw guar meal (residue after extraction of the guar gum) even when it's introduction represents only 25% of the soybean protein (Prasad *et al.*, 1998).

Table 9. : Experiments on incorporation of yeast, mycelium, leaf protein and other protein concentrates, in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
alga Scenedesmus acutus	2	12%	<12%	soybean meal	growth	Battaglini et al., 1979
amaranth (unthreshed mature grain seedhead)	4	30%	10%	oil cakes	growth	Bamikole et al., 2000b
Aspergillus niger (dried mycelium)	4	~10%	~10%	fodder yeast	growth	Atabekyan et al., 1976
beet (fodder beet) leaf protein concentrate	3	50% of soybean meal	50% of soybean meal	soybean meal	growth	El-Baki <i>et al.</i> , 1992
berseem leaf protein concentrate (<i>Trifolium</i> <i>alexandrinum</i>)	3	100% soya protein c.	50% soya protein c.	soya protein concentrate	growth	El-Adawy et al., 1999
brewer's yeast	2	6%	6%	casein/soya	plasma cholesterol	Abreu et al., 1994
					Cont	inuation on next page =>

Table 9						
cassava leaf protein concentrate	3	50% of soybean meal	50% of soybean meal	soybean meal	growth	El-Baki <i>et al.</i> , 1992
guar meal (<i>Cyamopsis</i> tetragonoloba)	2	22.5%	22.5%	groundnut cake	growth	Prasad et al., 1998
guar meal (Cyamopsis tetragonoloba)	5	100% of soybean meal	0%	soybean meal	growth	Schurg et al., 1986
mushroom (<i>Pleurotus</i> pulmonarius) substrate waste	4	30%	30%	lucerne & oil cakes	growth	Muzic et al., 1994
water haycinth leaf protein concentrate (<i>Eichhornia</i> <i>crassipes</i>)	3	100% soya protein c.	50% soya protein c.	soya protein concentrate	growth	El-Adawy <i>et al.</i> , 1999
yeast (Saccharomyces sp) dried by rotation roller	6	20%	15%	soybean meal	growth	Scapinello et al., 1999
yeast (<i>Saccharomyces</i> sp) dried by rotation roller	5	5-20%	0%	same yeast spray-dried	growth	Scapinello et al., 1999
yeast (Saccharomyces sp) spray-dried	6	20%	15%	soybean meal	growth	Scapinello et al., 1999
yeast (Saccharomyces sp.), spray-dried	5	100% of soybean meal	100% of soybean meal	soybean meal	growth	Scapinello et al., 1996a
yeast (<i>Saccharomyces</i> sp.), spray-dried	5	20%	20%	soybean meal	growth	Scapinello et al., 1997
yeast (Sacchomyces cerevisiae)	5	100% of soybean meal	75% of soybean meal	soybean meal	growth	Carregal et al., 1990
yeast Candida utilis	2	4%	4%	Saccharom. cerevisiae	growth	Battaglini, 1979

For the other protein concentrates, the main limiting factor seems to be the protein quality when no correction of the amino acids balance was made at the occasion of the substitution.

Animal products

Most of animal products experimented in rabbit nutrition were tested as source of protein. The only noticeable exception is the whey, fresh or dried, which is a source or energy (lactose). All the tested products seem to be usable, the hydrolysed leather or feather residues included.

Table 10. : Experiments on animal products incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
blood meal	2	10%	10%	fish meal	growth	Sahu et al., 1990
cattle hide scrap (hydrolysed meal)	5	100% of soybean meal	50% of soybean meal	soybean meal	growth	Furlan <i>et al.</i> , 1997
earthworms meal from Eisenia foetida and Lumbricus rubellus	2	~12%	~12%	soybean m.	growth	Orozco Almanza <i>et al.</i> , 1988
extruded hatchery waste	5	6%	6%	fish meal	growth	Handa et al., 1996
			·		Cont	inuation on next page =>

Proceedings - 8th World Rabbit Congress - September 7-10, 2004 - Puebla, Mexico Invited Paper

Table 10						
feather meal, enzymatically digested	2	30%	30%	soybean m.	growth	Fekete et al., 1986
fish meal	2	16%	16%	poultry offals	growth	Fotso et al., 2000
krill meal	3	6%	6%	animal protein	growth	Niedzwiadek <i>et al.</i> , 1981
leather hydrolysates	2	4%	4%	meat meal	growth	Verita et al., 1977
meat meal	2	10%	10%	fish meal	growth	Sahu et al., 1990
milk (dried skimmed)	2	5%	5%	fodder yeast	growth	Halga, 1974
milk (dried skimmed)	2	16%	16%	no milk	plasma choleste rol	Aggarwal et al., 1991
milk (dried skimmed)	2	15%	15%	-	pre- weaning	Blas et al., 1990
poultry viscera meal	3	8%	8%	fish meal	growth	Ahlawat et al., 2001
rumen liquor sediment (dried)	4	20%	15%	-	growth	El-Adawy, 1997
rumen liquor sediment (dried)	3	20%	10%		breeding	El-Adawy, 1997
silkworm chrysalis meal (Bombix mori)	6	100% of soybean meal	100% of soybean meal	soybean meal	growth	Carregal et al., 1987
whey (dried)	4	20%	20%	-	growth	Coppings et al., 1990
whey (dried)	2	5%	0%	-	growth	Masoero et al., 1980
whey (dried) \pm viable cells	3	5%	5%	barley	growth	Masoero et al., 1982
whey (fresh liquid sweet whey)	4	60%DM	40%DM	basal diet	growth	Colina et al., 1989
whey (hydrolysed condensed)	3	6.40%	6.40%	barley	growth	Masoero et al., 1982

Urea and other non protein sources of nitrogen

Because rabbit's caecal flora can use urea to synthesize true proteins (SALSE *et al.*, 1977), many experiments were conducted to try to replace in rabbit feeding true proteins by industrial non proteic compounds. When the protein level of the basal diet was very low (12% or less) the actual utilisation of urea or biuret was generally demonstrated (table 11). But when the basal diet has 13-14% of true protein or more, the non-proteic source was valueless. In this case, the only positive result is that it demonstrates that rabbits can tolerate up to 2% urea in their ration without trouble.

Forage studied for rabbit nutrition

In the forage group we have included about 80 raw materials. These feed ingredients have in common a chemical composition relatively close to nutritional recommendations. They also correspond to the whole or a part of the vegetative apparatus of plants harvested when growing. Most of them can be used in rabbit nutrition, even those with antinutrional factors such *Leucaena leucocephala* (20 experiments in the table 12) For this specific forage we have also include the study of SZYSZKA et al. (1985) which have worked with extracted mimosine to determine the acceptable level of this toxic amino acid.

Table 11. Experiments on the incorporation of industrial non-protein nitrogen sources in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	Substituted mainly to	Evaluation on	Authors
biuret	2	1.6	1.6%	-	N retention	Gioffre et al., 1988b
oxycellurea	2	5.3	0%	-	N retention	Gioffre et al., 1988b
urea	2	1%	1%	soybean m.	growth	Abou-Ashour <i>et al.</i> , 1983
urea	2	1.5	0%	-	N retention	Gioffre et al., 1988b
urea	3	2%	1%	fish meal	breeding	Niedzwiadek <i>et al.</i> , 1975
urea	3	2%	1%	fish meal	breeding	Niedzwiadek <i>et al.</i> , 1976
urea	4	0.75%	0.50%	ground nut cake	growth	Okeke, 1983
urea	2	1.5%	1.5%	groundnut cake	growth	Singh <i>et al.</i> , 1990
urea	4	3%	0%	addition	growth	Zhou et al., 2002

Table 12. Experiments on forages incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
Acacia albida pods	5	20%	20%	-	growth	Igwebuike et al., 1999
Acacia saligna	4	60%	40%	concentrate	growth	Abdel-Samee <i>et al.</i> , 1992
Acacia saligna, dried leaves	3	30%	30%	basal diet	growth	Eleraky et al., 1996
Acacia saligna, dried leaves	4	30%	30%	clover hay (berseem)	growth	El-Gendy, 1999a
amaranth meal (vegetative parts)	5	60%	15%	lucerne	growth	Alfaro et al., 1987
Amaranthus hypochondriachus sun dried		~40%	0%	lucerne	growth	Harris <i>et al.</i> , 1981a
Arachis glabrata perennial groundnut plant	2	100% of lucerne	100% of lucerne	lucerne	growth	Gomez-de-Varela <i>et al.</i> , 1983
Arachis pintoi pinto peanut, dried	4	30%	10%	basal diet	growth	Huang et al., 1998
Arachis pintoi, dried	2	15%	15%	-	growth	Nieves et al., 1998
Arachis pintoi, fresh green	5	40%	30%	-	growth	Nieves et al., 1996
artichoke leaves, dried	3	10%	10%	lucerne	growth	Bonomi et al., 1999
azolla (sun dried)	4	36%	24%	clover hay	growth	Abou-Zeid et al., 2001
Azolla filiculoides (sun dried)	4	36%	12%	basal diet	growth	Abdella et al., 1998
Azolla filiculoides dried meal	3	100% of soybean meal	50% of soybean meal	soybean meal	growth	Gualtieri et al., 1988
Azolla pinnata (sun dried)	4	60%	20%	lucerne	growth	Wittouck et al., 1992
banana leaves (fresh green)	4	60% DM	40% DM	basal diet	growth	Rohilla et al., 2000a
barley whole plant, dried	3	35%	35%	meadow hay	growth	Corino et al., 1982
barley whole plant, dried	3	28%	28%	cereal meal	growth	Auxilia et al., 1977

Continuation on next page =>

Proceedings - 8th World Rabbit Congress – September 7-10, 2004 – Puebla, Mexico Invited Paper

Table 12. Forages (continuation	on N° 1)					
barley whole plant, dried	3	35%	35%	hay (meadow ?)	growth	Polidori et al., 1984
Bauhinia variegata tree leaves (fresh)	2	to appetite	~15% DM	basal diet	angora	Negi et al., 1985
bermuda grass (Cynodon dactylon)	4	~20%	0%	lucerne	growth	Champe <i>et al.</i> , 1983
bermuda grass (<i>Cynodon dactylon</i>)	2	100% of lucerne	100% of lucerne	lucerne	growth	Daniels et al., 1985
berseem hay (<i>Trifolium</i> alexandrinum)	3	100% of lucerne	100% of lucerne	lucerne	growth	El-Adawy et al., 2000
berseem silage (Trifolium alexandrinum)	2	100% of fresh berseem	100% of fresh berseem	fresh berseem	growth	El-Ayouty et al., 2000
birdsfoot trefoil (<i>Lotus</i> corniculatus)	5	32%	32%	lucerne	growth	Grandi et al., 1988
Boehmeria nivea hay (ramie hay)	3	50%	25%	-	growth	Mendes et al., 1980
Bromus catharticus hay (first cut)	4	24%	24%	lucerne	growth	Grandi, 1993
broom grass (<i>Thysanolaena maxima</i>)	3	100%	40%	concentrate	growth	Rohilla et al., 2000b
cabagge (fresh)	3	25%	15%	maize	growth	Fomunyam, 1984
cabbage (fresh)	2	24%	24%	mixed cereals	growth	Fedeli Avanzi <i>et al.</i> , 1976
cabbage residues (fresh)	4	~75%	~75%	basal diet	growth	Shqueir et al., 1985
Cajanus cajan hay	2	100% of Cynodon dactylon	100% of Cynodon dactylon	Cynodon dactylon hay	growth	Moura et al., 1992
Cajanus cajan hay (guandu hay)	5	37%	28%	lucerne	growth	Crespi et al., 1992a
carrot leaves	2	3%	3%	stylosanthes	growth	Omole et al., 1976a
carrot roots (fresh)	2	45%	0%	mixed cereals	growth	Fedeli Avanzi <i>et al.</i> , 1976
carrot tops (sun dried)	3	35%	20%	berseem hay	growth	A-Eleraky, 1996
carrot tops (sun dried)	4	60%	60%	-	growth	El-Kerdawy et al., 1992
carrot tops (sun dried)	3	75% of soybean meal protein	75% of soybean meal protein	soybean meal	growth	Magouze et al., 1998
cassava leaves and stems hay	4	30%	10-20%	-	growth	Scapinello et al., 2000
cassava leaves and stems meal	4	50%	50%	clover hay	growth	Toson et al., 1999
cassava leaves Manihot esculenta	2	40%	0%	lucerne	growth	Harris <i>et al.</i> , 1981b
cassava leaves meal (dried)	2	42%	42%	poultry offals & wheat bran	growth	Fotso et al., 2000
cassava leaves meal dried	3	40%	40%	copra meal	growth	Ravindran et al., 1986
Cassia tora (tropical legume forage)	2	100% of lucerne	100% of lucerne	lucerne	growth	Cheeke et al., 1983
Cistus ladanifer flour	2	24%	24%	lucerne	growth	Zamora Lozano <i>et al.</i> , 1984
Clitoria ternata (tropical legume forage)	2	100% of lucerne	100% of lucerne	lucerne	growth	Cheeke et al., 1983
clover hay	4	60%	20%		growth	Marai et al., 1979
					Cont	inuation on next page =>

Proceedings - 8th World Rabbit Congress – September 7-10, 2004 – Puebla, Mexico Invited Paper

Table 12. Forages (continuation	on N°2)					
coconut (spent part after	4	30%	0%	-	growth	Eekeren et al., 1991
preparation of coconut milk)						,
Commelina benghalensis (stems and leaves)	2	40%	40%	basal diet	growth	Mtenga et al., 1994
Crotalaria ochroleuca, air dried	4	45%	15-30%	sunflower meal	growth	Laswai et al., 2000
Desmodium distortum	2	40%	40%	lucerne	growth	Harris et al., 1981b
Desmodium distortum	2	100% of	100% of	lucerne	growth	Cheeke et al., 1983
(tropical legume forage)		lucerne	lucerne		_	·
fodder beet leaves (fresh)	3	~40%	~40%	concentrate	growth	Bassuny et al., 1999
Gliricidia leaf meal	4	15%	5%	1	breeding	Herbert, 1998
Gliricidia maculata leaves, dried	2	27%	27%	berseem meal	growth	Rao et al., 1986
Gliricidia maculata leaves,	2	~10%	10%	concentrate	growth	Onwudike, 1995
fresh (=G. sepium)		DM			8	, , , , , , , , , , , , , , , , , , , ,
Grevia oppositifolia leaves	2	100% barley protein	0%	barley	growth	Sastry et al., 1982
Grewia optiva tree leaves	2	to	~15%	basal diet	angora	Negi et al., 1985
(fresh)		appetite	DM		_	
groundnut haulms	2	50%	20%	wheat bran	growth	Aduku <i>et al.</i> , 1986
groundnut haulms	5	100%	50%	basal diet	growth	Ngodigha et al., 1994
groundnut hay	2	27%	27%	berseem meal	growth	Rao et al., 1986
guinea grass (<i>Panicum</i> maximum) hay	2	100%	~10%	concentrate	growth	Bamikole et al., 1999
hedge lucerne (<i>Desmanthus</i> virgatus)	2	27%	27%	berseem meal	growth	Rao et al., 1986
Hibiscus rosa-sinensis leaves	2	18%	0%	basal diet	growth	Gidenne, 1985b
		75% of	75% of			
horse bean leaves, sun dried	3	soybean	soybean	soybean	growth	Magouze et al., 1998
(Vicia faba)		meal	meal	meal	8-4	
Kentucky bluegrass (<i>Poa</i>		protein	protein			
pratensis)	2	~40%	~40%	lucerne	growth	Harris <i>et al.</i> , 1981a
kudzu (<i>Pueraria</i> spp.)	2	100% of lucerne	0% of lucerne	lucerne	growth	Gomez-de-Varela <i>et al.</i> , 1983
kudzu (<i>Pueraria</i> thunbergiana) vine	4	50%	25%	ryegrass hay	growth	Randhir et al., 1994
lettuce (dried at 25-35°C)	4	30%	30%	basal diet	growth	Goby et al., 2001
lettuce (dried at 25-35°C)	3	20%	20%	beet pulp	growth	Goby et al., 2003
Leucaena leucocephala hay	6	23%	23%	lucerne	growth	Scapinello et al., 2000
Leucaena leucocephala hay cultivar «Cunningham»	6	22%	22%	lucerne	growth	Scapinello et al., 2000
Leucaena leucocephala leaf meal	4	60%	0%	-	growth	Tangendjaja et al., 1990
Leucaena leucocephala leaf meal with mimosin converted into DHP	3	60%	0%	untreated <i>Leuc</i> . leaves	growth	Tangendjaja et al., 1990
Leucaena leucocephala leaves (treated : heated, silage, sundried)	5	20%	20% heated	-	growth	Awosanya et al., 2000
Leucaena leucocephala leaves dried	5	20%	15%	-	growth	El-Galil et al., 2001
Leucaena leucocephala whole plant	2	20%	0%	-	growth	Nieves et al., 1995
		<u> </u>	<u> </u>	<u> </u>	Cont	inuation on next page =>
-						1

Proceedings - 8th World Rabbit Congress - September 7-10, 2004 - Puebla, Mexico Invited Paper

Table 12. Forages (continuati	ion N°3)					
Leucaena leucocephala leaves dried	3	30%	30%	basal diet	growth	Mtenga et al., 1994
Leucaena leucocephala leaves dried	2	20% or 40%	0%	basal diet	growth	Mtenga et al., 1994
Leucaena leucocephala leaves dried	4	30%	30%	hard wheat bran	growth	Parigi-Bini et al., 1984
Leucaena leucocephala leaves dried	3	50%	25%	basal diet	growth	Gupta <i>et al.</i> , 1996a
Leucaena leucocephala leaves dried	5	20%	15%	lucerne	growth	Ghazalah et al., 1998
Leucaena leucocephala leaves dried and treated with 1.2% FeCl ₃	3	50%	50%	basal diet	growth	Gupta et al., 1996a
Leucaena leucocephala leaves fresh	2	15%	15%	-	growth	Nieves et al., 1998
Leucaena leucocephala leaves fresh	4	24%	24%	wheat bran	growth	Muir et al., 1992
Leucaena leucocephala leaves fresh	2	~10% DM	0%	concentrate	growth	Onwudike, 1995
Leucaena leucocephala leaves fresh	3	50%	<30%	mash concentrate	growth	Onwuka <i>et al.</i> , 1992
Leucaena leucocephala leaves fresh	4	60% DM	40% DM	basal diet	growth	Rohilla et al., 1999
Leucaena leucocephala leaves fresh	2	24%	0%	other forages	breeding	Muir et al., 1995
Leucaena leucocephala, mimosine extracted from seeds of	4	0.39%	0.26%	basal diet	growth	Szyszka et al., 1985
Leunae cornuta stems and leaves (wild lettuce)	2	40%	40%	basal diet	growth	Mtenga et al., 1994
Lolium perenne (ray grass)	3	14%	14%	lucerne	growth	Grandi, 1983
lucerne dried	3	40%	40%	-	growth	Reddy, 1987
lucerne dried	2	96%	96%	basal diet	pregnanc ies	Pascual et al., 2002
lucerne dried	2	50%	50%	basal diet	growth	Payne et al., 1983
lucerne dried	5	40%	40%	-	growth	Cheeke et al., 1980
lucerne hay	3	96%	92%	barley & soybean m.	breeding at 30°C	Fernandez-Carmona <i>et al.</i> , 2000
lucerne hay	3	96%	0%	barley & soybean m.	breeding at ~22°C	Pascual et al., 2000
lucerne with high saponins concentration, dried	4	35%	best with 0,6% saponin in diet	lucerne low concentra. of saponin	growth	Auxilia et al., 1983
lucerne, dehydrated after ensiling	3	50%	0%	lucerne	growth	Perez et al., 1990
lupin (<i>Lupinus albus</i>) as green forage	3	40%	20%	basal diet	growth	El-Gendy, 1999b
			1000/ 0			Cl. 1 1 . 1002
Macroptilium lathyroides (tropical legume forage)	2	100% of lucerne	100% of lucerne	lucerne	growth	Cheeke et al., 1983
Macroptilium lathyroides	2			fresh berseem	growth	El-Ayouty et al., 2000
Macroptilium lathyroides (tropical legume forage)		lucerne 100% of fresh	lucerne 100% of fresh	fresh		·
Macroptilium lathyroides (tropical legume forage) maize silage (whole plant) maize whole plant, dried	2	lucerne 100% of fresh berseem	lucerne 100% of fresh berseem	fresh berseem	growth	El-Ayouty et al., 2000
Macroptilium lathyroides (tropical legume forage) maize silage (whole plant) maize whole plant, dried maize whole plant ,dried	2 3 3	lucerne 100% of fresh berseem 28% 40%	lucerne 100% of fresh berseem 28% 40%	fresh berseem cereal meal maize	growth growth	El-Ayouty <i>et al.</i> , 2000 Auxilia <i>et al.</i> , 1977 Auxilia <i>et al.</i> , 1979
Macroptilium lathyroides (tropical legume forage) maize silage (whole plant) maize whole plant, dried	2	lucerne 100% of fresh berseem 28%	lucerne 100% of fresh berseem 28%	fresh berseem cereal meal	growth	El-Ayouty et al., 2000 Auxilia et al., 1977

Proceedings - 8th World Rabbit Congress – September 7-10, 2004 – Puebla, Mexico Invited Paper

Table 12. Forages (continuation	on N°4)					
maize whole plant, dried	2	35%	35%	hay	growth	Polidori et al., 1982
maize whole plant, dried	3	35%	35%	hay (meadow ?)	growth	Polidori et al., 1984
maize whole plant, dried	4	70%	70%	wheat grain & straw	growth	Seroux <i>et al.</i> , 1980
Morus alba mulberry fresh leaves	3	40%	40%	concentrate	growth	Rohilla et al., 2000c
Morus alba mulberry fresh leaves	3	50%	50%	basal diet	growth	Meena et al., 1999
Neonotonia wightii hay (perennial soya)	5	38%	38%	lucerne	growth	Crespi et al., 1992b
oat plant meal	3	50%	25%	basal diet	growth	Bhatt et al., 2001
oats + vetch forage, ensiled	21	100% fresh forage	100% fresh forage	same fresh green forage	growth	Kennou et al., 1990
orchard grass (Dactylis glomerata) seed screening	4	45%	45%	lucerne	growth	El-Sayaad et al., 1992
palm frond leaves (oil palmtree)	4	100%	<<50%	basal diet	growth	Dahlan <i>et al.</i> , 1994
poplar leaves (Populus tremuloides)	5	40%	40%	lucerne	growth	Ayers et al., 1992b
Potamogeton natans L. var. fluitans	2	8%	8%	lucerne, bran & barley	growth	Grandi, 1978
Psophocarpus tetragonolobus	2	40%	0%	lucerne	growth	Harris et al., 1981b
Psophocarpus tetragonolobus hay	4	22%	22%	lucerne	growth	Grandi <i>et al.</i> , 1985
rape (fresh)	2	21%	21%	mixed cereals	growth	Fedeli Avanzi <i>et al.</i> , 1976
Robinia pseudoacacia, black locust leaves meal	2	40%	0%	lucerne	growth	Harris et al., 1984
Robinia pseudoacacia leaves	2	40%	0%	lucerne	growth	Cheeke et al., 1984
Robinia pseudoacacia leaves	2	100%	100%	Concentr.+ Pennisetum	growth	Singh et al., 1999
Robinia pseudoacacia leaves (partially sun dried)	3	~33% DM	~ 17% DM	basal diet	growth	Sanjiv et al., 2000
Robinia pseudoacacia leaves (dried)	4	75%	75%	basal diet	growth	Bhatt et al., 2000
ryegrass	2	50%	50%	basal diet	growth	Payne et al., 1983
ryegrass straw (NH ₃ treated)	2	20%	20%	rygrass straw	growth	Aderibigbe et al., 1992
Schleichera oleosa leaf meal	3	10%	10%	basal diet	growth	Sreemannarayana <i>et al.</i> , 2001
seaweed (Ulva fasciata) dried	4	15%	15%	concentrate	growth	Raju <i>et al.</i> , 1995
seaweed (Ulva fasciata) dried	4	15%	5%	basal diet	growth	Sreemannarayana <i>et al.</i> , 1995
Sesbania aegyptica (dried leaves)	5	20%	15%	lucerne	growth	Ghazalah et al., 1998
star grass (Cynodon plectostachyus)	2	~40%	0%	basal diet	growth	Ramchurn et al., 2000
Stylosanthes	2	40%	0%	lucerne	growth	Harris et al., 1981b
Stylosanthes hamata cv. Verano hay	2	100%	50%	concentrate	growth	Bamikole et al., 1999
sulla (Hedysarum coronarium)	2	35%	35%	lucerne	growth	Cucchiara, 1989
sunflower leaves	2	40%	0%	lucerne	growth	Harris et al., 1981a
					Con	tinuation on next page =>

Proceedings - 8th World Rabbit Congress - September 7-10, 2004 - Puebla, Mexico Invited Paper

Table 12. Forages (continuation	on N°5)					
sunhemp (<i>Crotalaria juncea</i>) dried	2	27%	27%	berseem meal	growth	Rao et al., 1986
sweet potato tops	6	100%	80%	sweet potato roots	growth	Abu <i>et al</i> ., 1999
tall fescue hay	3	50%	0%	basal diet	growth	Bhatt et al., 2001
<i>Trifolium pratense</i> red clover hay	4	30%	30%	lucerne	growth	Grandi <i>et al.</i> , 1988
Vicia sativa, common vetch sun dried	2	60%	60%	lucerne hay	breeding	Lopez et al., 1996
Vigna umbellata (ricebeans) green	3	~25%	~50%	basal diet	growth	Gupta et al., 1996b
Vigna unguiculata cowpea testa, dried	5	80%	60%	poultry mash	growth	Sese et al., 1999
Vigna unguiculata owpea leaves, sun dried	3	75% of soya protein	0% of soya protein	soybean meal	growth	Magouze et al., 1998
water haycinth (Eichhornia crassipes)	3	100% of lucerne	0% of lucerne	lucerne	growth	El-Adawy et al., 2000
water hyacinth (<i>Eichhornia</i> crassipes)	2	10%	10%	lucerne	growth	Grandi, 1981a
water hyacinth (Eichhornia crassipes)	4	12%	12%	1	growth	Grandi et al., 1983a
water hyacinth (Eichhornia crassipes)	3	30%	30%	lucerne	growth	Moreland et al., 1991
water hyacinth (Eichhornia crassipes)	3	30%	30%	lucerne	breeding	Moreland et al., 1991
water hyacinth (<i>Eichhornia</i> crassipes) prebloom stage	4	30%	10-20%	barley	growth	Zeweil et al., 1993
water hyacinth (<i>Eichhornia</i> crassipes) dried	4	30%	30%	-	growth	Biobaku <i>et al.</i> , 1991
water hyacinth (<i>Eichhornia</i> crassipes) dried leaves	3	30%	30%	basal diet	growth	Eleraky et al., 1996
water lettuce (Pistia stratiotes) dried	4	30%	30%	-	growth	Biobaku et al., 1991
wheat whole plant (dried)	3	28%	28%	cereal	growth	Auxilia et al., 1977

Cereal straws (alkali treated or not)

Straws have generally a poor nutritive value for rabbits, but this type of raw material may be an excellent source of fibre. Alkali treatment which makes soluble one part of lignin may sometime improve the nutritive value, but it also modifies the "fiber" ability of treated straw to provide fibre component necessary for digestive health control (table1 part 2). The normal incorporation level can be increased up to 15-20% with satisfactory results. With higher level it is clearly impossible to formulate a balanced diet.

Table 13: Experiments on straw (alkali treated or not) incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level	Accep- table	substituted mainly to	Evalua- tion	Authors
barley straw	4	studied 45%	level 15%	basal diet	on	Radwan et al., 1983
barley straw	2	10%	10%	lucerne	growth	Ben Rayana <i>et al.</i> , 1995
barley straw (NaOH or NH ₃	4	45%	0%	untreated	growth growth	Partridge <i>et al.</i> , 1984
treated)	-			straw		,
barley straw (NaOH treated)	4	18%	18%	lucerne	growth	Gioffre et al., 1988a
barley straw (NaOH treated)	4	45%	15%	basal diet	growth	Radwan <i>et al.</i> , 1983
barley straw (NH ₃ treated)	4	45%	15%	basal diet	growth	Radwan et al., 1983
rice straw (5% NaOH treated)	3	25%	15%	lucerne	growth	Sfairopoulos et al., 1987
rice straw (NaOH treated or not)	5	30%	30%	lucerne hay	growth	Masoero et al., 1984
rice straw fermented with Trichoderma sp. & Azotobacter chroococcum	3	25%	25%	wheat bran	growth	Huang et al., 1990
wheat straw	2	10%	10%	grass meal	growth	Bielanski et al., 1996a
wheat straw	2	10%	10%	grass meal	breeding	Bielanski et al., 1996b
wheat straw	3	19%	19%	lucerne	growth	Franck et al., 1978
wheat straw	4	20%	13%	lucerne	growth	Gippert et al., 1988
wheat straw	2	10%	10%	hay	growth	King, 1983
wheat straw	2	10%	10%	lucerne	growth	Lebas et al., 1978
wheat straw	3	20%	20%	basal diet	growth	Lebas et al., 2001
wheat straw	3	15%	15%	-	growth	Parigi-Bini et al., 1994
wheat straw	4	30%	0%	meadow hay	growth	Pomytko et al., 1975
wheat straw	2	50%	0%	basal diet	growth	Payne et al., 1983
wheat straw (NaOH treated)	5	25%	20%	lucerne	growth	Jensen, 1984
wheat straw (NaOH 4-8% treated)	2	25%	25%	straw	digest.	Abd-Ellah, 1995
wheat straw (NaOH or NH ₃ treated)	2	12%	12%	grass meal	growth	Bielanski et al., 1996a
wheat straw (NaOH or NH ₃ treated)	2	12%	12%	grass meal	breeding	Bielanski et al., 1996b
wheat straw (NaOH or NH ₃ treated)	2	12%	12%	-	growth	Guermandi, 1999
wheat straw (NaOH treated or not)	5	30%	30%	lucerne hay	growth	Masoero et al., 1984
wheat straw (NaOH treated)	3	20%	20%	untreated straw	growth	Lebas et al., 1978
wheat straw (NaOH treated)	2	10%	10%	untreated straw	growth	Lebas et al., 1979
wheat straw (NaOH treated)	4	30%	30%		breeding	Lindeman et al., 1982
wheat straw (NaOH treated)	2	50%	50%	untreated straw	growth	Payne et al., 1984
wheat straw (NH ₃ treated)	2	50%	0%	untreated straw	growth	Payne et al., 1984
wheat straw (treated 2% NaOH)	4	30%	30%	lucerne	growth	Mercier et al., 1980
wheat straw (untreated)	4	30%	30%	lucerne	growth	Mercier et al., 1980
wheat straw ± treated	4	20%	20%	-	growth	Chiofalo et al., 1984

Hulls, husks, corn and stalks

Parallel to that of straw, the utilisation of the cover of some dried grains may provide fibres of different qualities. Most of these products may be used widely in rabbit nutrition (table 14) and the acceptable incorporation level may be increased up to 15-20% as it is for straws. Nevertheless for formulation it must be taken in account that fibrous cell walls composition vary widely from one source to the other (SAUVANT *et al.*, 2002), and that a mixture of various fibre sources is frequently the only solution to meet the qualitative recommendations during rabbits diet formulation.

Table 14. Experiments on hulls, husks, cobs, stalks ... incorporation in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
almond hulls	4	60%	40%	lucerne	growth	Aderibigbe et al., 1990
beans straw (<i>Phaseolus</i> vulgaris?)	2	10%	10%	lucerne	growth	Gippert et al., 1988
cocoa-pod husks	3	30%	30%	-	growth	Ridzwan et al., 1993
cocoa-pod husks	3	25%	25%	-	growth	Ridzwan et al., 1995
maize cobs	3	20%	10%	Berseem hay	growth	A-Eleraky, 1996
maize cobs	4	42%	14%	-	growth	Marai et al., 1979
maize cobs [corn cobs]	3	20%	10%	lucerne	growth	Gippert et al., 1988
maize stalk	4	30%	20%	clover hay	growth	Tag-El-Din et al., 1999
maize stalk [corn stalk]	4	20%	20%	lucerne	growth	Gippert et al., 1988
peanut hulls	3	18%	12%	berseem hay	growth	El-Gamal, 2003
peanut skins	3	39%	0%	berseem hay	growth	El-Gamal, 2003
rapeseed hulls	4	40%	40%	lucerne	growth	Lebas et al., 1981
rapeseed hulls	2	20%	0%	wheat & straw	breding	Lebas et al., 1982
rice hulls	6	30%	10%	-	growth	Raharjo et al., 1990
soybean hulls	2	10%	10%	lucerne	growth	Evans et al., 1983
soybean hulls	3	20%	20%	-	growth	Martina, 1983
sunflower hulls	4	20%	15%	lucerne	growth	Gippert et al., 1988
sunflower hulls	3	20%	20%	-	growth	Martina, 1983
sunflower husks	6	25%	18%	basal diet	growth	Gippert et al., 1984

Industrial by products used mainly as fibre source

The treatment of vegetable products for human consumption (tomatoes for juices or sauces, grapes for wine ...) or for industry (wood for sawing or paper production...) produces a lot of fibrous by-products which can be used in rabbit nutrition. Even if some of them have no interest as feed source (e.g. date pits – ABOU-ELA et al., 1999), most of the others can be used at 15-20% and sometimes up to 30% (table 15). Nevertheless according to our experience on the practical utilisation of products of this group, their main problem is not the proportion of such or such nutrient, but the risk of mycotoxins presence (LEBAS et al., 1998). Effectively these products are generally damp when produced and they are rarely processed quickly enough to avoid mouldy development. For this reason before to try to use one product of this

category in rabbit feeding, the first precaution is to study its industrial process of production and storage and to evaluate the risk of mycotoxins presence.

Table 15. Experiments on industrial by-products used mainly as source of fibre in rabbit feeding.

Ingredient	Nb Levels	Highest level studied	Accep- table level	substituted mainly to	Evalua- tion on	Authors
alder bark (Alnus)	2	25%	need of balanced diets	lucerne	growth	Ayers et al., 1992a
alder sawdust (Alnus)	2	25%	need of balanced diets	lucerne	growth	Ayers et al., 1992a
apple pomace (dried)	3	20%	20%	lucerne	growth	Gippert et al., 1988
apple pomace (dried)	4	30%	11%	-	growth	Sawal et al., 1995
apple pomace (dried)	5	50%	30%	=	growth	Schurg et al., 1980
artichoke bracts, dried	3	30%	15%	lucerne	growth	Bonanno et al., 1994
artichoke bracts, dried	3	20%	20%	-	growth	El-Sayaad et al., 1995
barley screenings	2	20%	20%	lucerne	growth	Evans et al., 1983
brewer's grains, dried	4	45%	15%	-	growth	Omole et al., 1976b
brewer's grains, dried	2	30%	30%	soybean m. & maize	growth	Berchiche et al., 1999
brewer's grains, dried	2	30%	30%	basal diet	growth	Maertens et al., 1997
date pits	5	20%	0%	-	growth	Aboul-Ela et al., 1999
eggplant (Solanum melongena) waste from the freezing industry	3	6.50%	3.50%	lucerne	growth	Grandi et al., 1983c
grape pomace	2	30%	30%	beet pulp	growth	Harris et al., 1980
grape pomace	4	30%	30%	lucerne	growth	Motta Ferreira <i>et al.</i> , 1996
grape pomace	6	40%	40%	lucerne	growth	Parigi-Bini et al., 1980
grape pomace	2	10%	10%	-	growth	Schurg et al., 1980
grape seed meal (defatted)	2	15%	15%	basal diet	growth	Garcia et al., 1999
grape seed meal (dehulled)	3	20%	20%	lucerne	growth	Cavani et al., 1988a
grape seed meal (whole)	2	15%	15%	lucerne	growth	Alicata et al., 1988a
marrow (Cucurbita pepo) industrial waste	3	10%	10%	soybean meal & wheat bran	growth	Grandi, 1981b
malt	2	8%	8%	-	growth	Bagliacca et al., 1987
oak sawdust (Quercus)	2	25%	need of balanced diets	lucerne	growth	Ayers et al., 1992a
orchard grass (<i>Dactylis</i> glomerata) seed screening	4	45%	45%	lucerne	growth	El-Sayaad et al., 1992
palm oil mill effluent (dried)	4	10%	10%	maize offals	growth	Abu <i>et al.</i> , 1993
paper (ground paper)	2	10%	10%	hay	growth	King, 1983
paper (ground salvaged paper)	3	20%	20%	lucerne	growth	Lebas, 1976
pear pomace	2	10%	10%	-	growth	Schurg et al., 1980
peas (<i>Pisum sativum</i>) waste from the pea processing industry	3	10%	10%	lucerne	growth	Grandi <i>et al.</i> , 1983d

Continuation on next page =>

Table 15: Industrial by-products, source of fibre (continuation)						
Robinia pseudoacacia bark	2	25%	need of balanced diets	lucerne	growth	Ayers et al., 1992a
rumen content, dried	5	20%	12%	maize	growth	Olumeyan et al., 1996
rumen content, sun-dried	4	25%	15%	hay	growth	Abd-El-Rahman <i>et al.</i> , 1989
sawdust	4	25,5%	8,5%	-	growth	Marai et al., 1979
sawdust	4	20%	15%	ı	growth	Radwan, 1994
sawdust	4	10%	10%	ı	growth	Fayek et al., 1989
sawdust (4%NaOH treated)	-	-	15%	ı	growth	Omole et al., 1981b
sawdust (urea-treated)	4	10%	10%	ı	growth	Fayek et al., 1989
sweet pepper (<i>Capsicum</i> annuum) discarded stalk, receptacle and central core	3	8%	8%	lucerne	growth	Grandi et al., 1983b
tea marc	4	18%	18%	-	growth	Eekeren et al., 1991
tobacco fibrous residues after removal of protein fractions	3	24%	24%	lucerne	growth	Costantini et al., 1988
tomato pomace (dried)	4	40%	10%	-	growth	Caro et al., 1993
tomato pomace (dried)	3	50%	50%	concentrate	angora	Caro et al., 1995
tomato pomace (dried)	3	10%	10%	maize	growth	El-Razik, 1996
tomato pomace (dried)	4	30%	20%	lucerne	growth	Gippert et al., 1988
tomato pomace (dried)	3	20%	13%	-	growth	Sawal et al., 1996
tomato processing residues	3	20%	20%	wheat bran & lucerne	growth	Rojas et al., 1989
tomato skins without seeds	2	10%	<<10%	oats	growth	Battaglini et al., 1978b
tomato skins and seeds	2	10%	10%	oats	growth	Battaglini et al., 1978b
tomato skins and seeds	2	20%	20%	lucerne	growth	Alicata et al., 1988b
tomato skins and seeds	2	20%	20%	lucerne	breeding	Alicata et al., 1996
vine residues (dried)	3	10%	5%	-	growth	Martina, 1983

CONCLUSION

This invited report has been for the author the occasion to propose a practical updated table of nutrients recommendations for rabbit feeding, as complete as possible. The long list of ingredients studied for rabbit feeding must be considered mainly as an annotated list of references on the subject. It may be risky to use the highest acceptable levels mentioned in tables 3 to 15 for a specific raw material without reading the original papers. In addition, although some raw material were extensively studied and don't need more experiments (wheat or barley straw for example), for many others new experiments would be welcome.

ACKNOWLEDGMENTS

The author would particularly like to thank Mrs Sylvie Combes (INRA Rabbit Research Station, Toulouse) for her valuable help in the CAB International Internet interrogation.

REFERENCES

- ABDELLA M. M., EL-SAYAAD G. A. E., GHAZAL F. M., EL-BAZ T. A., 1998. Sun dried Azolla as new feedstuff in growing rabbit diets. *Egyptian Journal of Rabbit Science* **8**:81-93.
- ABD-ELLAH A. M., 1995. Preliminary study of using treated wheat straw in rabbit diets. Assiut Veterinary Medical Journal **34**:57-71.
- ABD-EL-RAHIM M. I., TAWFEEK M. I., AHMED S. S., AMIN R. S., 1994. Using some of unusual waste vegetable oils as fat supplements in growing rabbit rations. *Cahiers Options Mediterraneennes* **8**:111-123.
- ABD-EL-RAHMAN G. A., EL-SAYAAD G. A. E., 1989. Inclusion of rumen contents in rations for rabbits. *Proceedings of the third Egyptian British conference on animals, fish, and poultry production, 7-10 October 1989, Alexandria, Egypt.*:1009-1015.
- ABDEL-SAMEE A. M., EL-GENDY K. M., IBRAHIM H., 1992. Growth performance and some related physiological changes in rabbits as affected by feeding acacia under subtropical conditions. *Egyptian Journal of Rabbit Science* **2**:13-22.
- ABOU-ASHOUR A. M., AHMED B. M., 1983. Effect of urea-containing diet on slaughter and carcass information of growing rabbits. *Minufiya Journal of Agricultural Research* **7**:167-175.
- ABOUL-ELA S., EL-HINDAWY M., SHERIF S. Y., TAWFIK E. S., ATTIA A. I., 1999. Evaluating date pits as a waste product of food industries in feeding NZW rabbits. *Cahiers Options Mediterraneennes* **41**:57-65.
- ABOU-ZEID A. E., MOHAMED F. F., RADWAN M. S. M., 2001. Assessment of the nutritive value of dried azolla hay as a possible feed ingredient for growing NZW rabbits. *Egyptian Journal of Rabbit Science* **11**:1-21.
- ABREU J. D., MILLAN N., 1994. Effect of addition of brewer's yeast to soy protein and casein on plasma cholesterol levels of rabbits. *Archivos Latinoamericanos de Nutricion* **44**:18-22.
- ABU O. A., EKPENYONG T. E., 1993. Utilization of dried palmoil mill effluent by young growing rabbits. *World Rabbit Science* **1**:11-15.
- ABU O. A., ONIFADE A. A., 1996. Effects of cassava waste substitution for maize in weaner rabbit diets. *Bulletin of Animal Health and Production in Africa* **44**:167-172.
- ABU O. A., TEWE O. O., BAKARE J., 1999. Performance, nutrient digestibility and carcass characteristics of rabbit fed sweet potato based diets. *International Journal of Animal Sciences* **14**:197-201.
- ABU O. A., TEWE O. O., BAKARE J., 1999. Performance, nutrient digestibility and carcass characteristics of rabbit fed sweet potato based diets. *International Journal of Animal Sciences* **14**:197-201.
- ADERIBIGBE A. O., GAD A., CHEEKE P. R., PATTON N. M., 1992. Effects of supplementing weanling rabbit diets with untreated and ammoniated annual ryegrass straw as fiber sources on performance and nutrient digestibility. *Journal of Applied Rabbit Research* **15**:1189-1195.
- ADERIBIGBE A. O., TOR-AGBIDYE Y., CHEEKE P. R., PATTON N. M., 1990. Evaluation of almond hulls as a feedstuff for rabbits. *Journal of Applied Rabbit Research* **13**:110-113.
- ADUKU A. O., DIM N. I., AGANGA A. A., 1988. Note on a comparative evaluation of palm kernel meal, peanut meal and sunflower meal in diets for weanling rabbits. *Journal of Applied Rabbit Research* **11**:264-266.

- ADUKU A. O., OKOH P. N., NJOKU P. C., ORJICHIE E. A., AGANGA A. A., DIM N. I., 1986. Evaluation of cowpea (*Vigna unguiculata*) and peanut (*Arachis hypogaea*) haulms as feedstuffs for weanling rabbits in a tropical environment (Nigeria). *Journal of Applied Rabbit Research* **9**:178-180.
- A-ELERAKY W., 1996. Utilization of some untraditional feedstuffs in nutrition of rabbits. *Egyptian Journal of Rabbit Science* **6**:109-119.
- AFRIS, 2004. Animal feed resources information system). Web free access data base, available in English, French, Spanish, Arabic and Chinese languages, on the FAO web site http://www.fao.org/ag/aga/agap/frg/afris/index_en.htm (consultation of 15th May 2004)
- AGGARWAL A. K., KANSAL V. K., 1991. Regression of atherosclerosis in rabbit on skim milk diet. *Milchwissenschaft* **46**:766-769.
- AGUNBIADE J. A., ADEYEMI O. A., FASINA O. E., ASHOROBI B. O., ADEBANJO M. O., WAIDE O. A., 1999. Cassava peels and leaves in the diet of rabbits: effect on performance and carcass characteristics. *Nigerian Journal of Animal Production* **26**:29-34.
- AGUNBIADE J. A., ADEYEMI O. A., FASINA O. E., BAGBE S. A., 2001. Fortification of cassava peel meals in balanced diets for rabbits. *Nigerian Journal of Animal Production* **28**:167-173.
- AGWUNOBI L. N., OKAFOR E. P., OHAZURIKE N., 2000. Tannia cocoyam tuber meal (*Xanthosoma sagittifolium*) as a replacement for maize grain in the diets of rabbits. *Global Journal of Pure and Applied Sciences* **6**:419-423.
- AGWUNOBI L. N., ONIFADE A., ERONDU O., 1997. Sweetpotato [*Ipomoea batatas* (L.) Lam.] tuber meal as a substitute for maize (*Zea mays* L.) grain in rabbit ration. *Tropical Agriculture* **74**:168-171.
- AHLAWAT S. S., SHARMA D. P., PANDA P. C., 2001. Effect of feeding poultry viscera meal on carcass traits of broiler rabbits. *Indian Journal of Animal Research* **35**:141-143.
- AKRAM M., RASOOL S., ASLAM M., NAWAZ S., 1989. Comparative nutritive value of barley, oats and maize in rabbits. *Pakistan Veterinary Journal* **9**:85-86.
- ALFARO M. A., RAMIREZ R., MARTINEZ A., BRESSANI R., 1987. Evaluation of different amounts of amaranth meal (vegetative parts) to replace lucerne leaf meal in diets for growing rabbits. *Archivos Latinoamericanos de Nutricion* **37**:174-185.
- ALICATA M. L., BONANNO A., ALABISO M., PORTOLANO B., STIMOLO M. C., 1992. Further trials on the use of chick-peas in growing rabbit feeding. *Journal of Applied Rabbit Research* **15**:1025-1932.
- ALICATA M. L., BONANNO A., ALABISO M., PORTOLANO B., STIMOLO M. C., 1993. Further trials on the use of chickpeas in the feeding of growing rabbits. *Rivista di Coniglicoltura* **30**:39-43.
- ALICATA M. L., BONANNO A., GIACCONE P., LETO G., 1988a. Use of whole grape seeds in the feeding of meat rabbits. *Zootecnica e Nutrizione Animale* **14**:341-348.
- ALICATA M. L., BONANNO A., GIACCONE P., LETO G., BATTAGLIA D., 1988b. Use of tomato skins and seeds in the feeding of meat rabbits. *Rivista di Coniglicoltura* **25**:33-36.
- ALICATA M. L., BONANNO A., LETO G., GIACCONE P., ALABISO M., 1991. Chickpeas in the feeding of rabbits. *Revista di Coniglicoltura* **28**:53-56.
- ALICATA M. L., GIACCONE P., LETO G., BONANNO A., 1985. Dried lemon pulp in the feeding of meat rabbits. *Coniglicoltura* 22:33-35.
- ALICATA M. L., LETO G., BONANNO A., ALABISO M., 1996. The use of tomato skins and seeds in the feeding of breeding rabbits. *Rivista di Coniglicoltura* **33**:39-45.

- AMBER K. H., 2000. Effect of replacing mung beans (*Phaseolus aureus*) for soybean meal in diets for growing rabbits. 7th World Rabbit Congress, Valencia vol.**C**:69-75.
- ATABEKYAN G. A., AVAKYAN Z. L., ASLANYAN T. G., 1976. Fungus mycelium as a complete protein feed for young rabbits. *Krolikovodstvo i Zverovodstvo*:23.
- AUXILIA M. T., BERGOGLIO G., MASOERO G., MAZZOCCO P., PONSETTO P. D., TERRAMOCCIA S., 1983. Feeding meat rabbits. Use of lucerne with different saponin content. *Coniglicoltura* **20**:51-58.
- AUXILIA M. T., MASOERO G., 1980. Emploi du maïs-fourrage deshydraté dansd l'alimentation des lapins. *2nd World Rabbit Congress, Bracelona* **2**:147-156.
- AUXILIA M. T., MASOERO G., COSTANTINI F., 1977. Meals of dried whole maize, barley and wheat plants cut at the waxy stage of maturity in feeds for fattening rabbits. *Annali dell'Istituto Sperimentale per la Zootecnia* **10**:201-212.
- AUXILIA M. T., MASOERO G., TERRAMOCCIA S., 1979. Use of dehydrated whole maize plant in diets for growing rabbits. *Annali dell'Istituto Sperimentale per la Zootecnia* **12**:43-50.
- AWOSANYA B., AKINYODE M. A., 2000. Treatment effect of leucaena leaf meal on the carcass characteristics of rabbits. *Nigerian Journal of Animal Production* **27**:90-94
- AWOSANYA B., JOSEPH K. J., SOWUNMI S. O., 1996. Performance of rabbits on graded dietary levels of roasted Leucaena leucocephala seed meal. *Journal of Applied Animal Research* **9**:135-139.
- AYERS A. C., CHEEKE P. R., PATTON N. M., 1992. Effect on weaning rabbits of black locust (*Robinia pseudoacacia*) bark, oak sawdust, red alder (*Alnus rubra*) bark and red alder sawdust in the diet. *Journal of Applied Rabbit Research* **15**:1166-1174.
- AYERS A. C., CHEEKE P. R., PATTON N. M., 1992. Evaluation of hybrid poplar leaves as a feedstuff for rabbits. *Journal of Applied Rabbit Research* **15**:1033-1042.
- BAGLIACCA M., MORI B., 1987. Effect of introducing malt industry products in diets for rabbits. *Rivista di Coniglicoltura* **24**:51-56.
- BALOGUN O. O., BALOGUN E. A., 1983. The feeding potential of African locust-bean (*Parkia filicoidea* Welw) meal in rabbits. *Nutrition Reports International* **27**:1231-1242.
- BALOGUN T. F., ETUKUDE U. W., 1991. Undecorticated, full-fat sunflower seeds in the diet of rabbits. *Journal of Applied Rabbit Research* **14**:101-104.
- BAMGBOSE A. M., NWOKORO S. O., KUDI A. C., BOGORO S., EGBO M. L., KUSHWAHA S., 1997. Effect of feeding tagernut (Cyperus rotundus L.) meal on the performance of rabbits. *Tropical Animal Health and Production* **29**:60-62.
- Bamikole M. A., Ezenwa I., 1999. Performance of rabbits on Guinea grass and Verano stylo hays in the dry season and effect of concentrate supplementation. *Animal Feed Science and Technology* **80**:67-74.
- Bamikole M. A., Ezenwa I., 1999. Performance of rabbits on Guinea grass and Verano stylo hays in the dry season and effect of concentrate supplementation. *Animal Feed Science and Technology* **80**:67-74.
- Bamikole M. A., Ezenwa I., Adewumi M. K., Omojola A. B., Adetimirin V. O., Arigbede O. M., Orisadeyi S. A., 2000a. Alternative feed resources for formulating concentrate diets of rabbits. 1. Unthreshed grain amaranth seedhead. *World Rabbit Science* **8**:125-129.
- BAMIKOLE M. A., EZENWA I., ADEWUMI M. K., OMOJOLA A. B., AKEN'OVA M. E., BABAYEMI O. J., OLUFOSOYE O. F., 2000b. Alternative feed resources for formulating

- concentrate diets of rabbits. 2. Jack bean (*Canavalia ensiformis*) seeds. *World Rabbit Science* **8**:131-136.
- BASSUNY S. M., SARHAN M. A., EL-ADAWY M. M., 1999. Nutritional studies on some green forages in Egypt. 6. Effect of partial replacement of concentrates by fodder beet leaves and roots in growing rabbit diets. *Egyptian Journal of Rabbit Science* **9**:215-227.
- BATTAGLINI M., 1979. Algae and yeasts for rabbits. Coniglicoltura 16:39-40.
- BATTAGLINI M., CASTELLINI C., COSTANTINI F., CAVALLETTI C., 1991. Use of white lupin (Lupinus albus L.) in rabbit feeding. *Rivista di Coniglicoltura* **28**:45-50.
- BATTAGLINI M., COSTANTINI F., 1977. Sunflower oilmeal in diets for rabbits. *Coniglicoltura* **14**:29-34.
- BATTAGLINI M., COSTANTINI F., 1978a. Possibility of using dried beet pulp in diets for growing rabbits. *Zootecnica e Nutrizione Animale* **4**:27-34.
- BATTAGLINI M., COSTANTINI F., 1978B. Byproducts from the tomato industry in diets for growing rabbits. *Coniglicoltura* **15**:19-22.
- BATTAGLINI M., GRANDI A., PAOLETTI C., PUSHPARAJ B., 1979. Use of biomass of Scenedesmus acutus 8M as an alternative protein concentrate in diets for growing rabbits. *Zootecnica e Nutrizione Animale* **5**:211-218.
- BEN RAYANA A., BERGAOUI R., BEN HAMOUDA M., KAYOULI C., 1994. Olive oil cake incorporation for young rabbit feeding. *World Rabbit Science* **2**:127-134.
- BEN RAYANA A., BERGAOUI R., KAYOULI C., HAMOUDA B. M., 1995. Effects of barley straw utilization as main fibre source on diet's digestibility, growth performance and slaughter rate of growing rabbits. *World Rabbit Science* **3**:147-155.
- BERCHICHE M., KADI S. A., LEBAS F., 2000. Valorisation of wheat by-products by growing rabbits of local Algerian population. *7th World Rabbit Congress, Valencia* vol. C:119-124.
- BERCHICHE M., LEBAS F., OUHAYOUN J., 1988. Field beans (*Vicia faba minor*) as a protein source for rabbit: effect on growth and carcass quality. *4th World Rabbit Congress, Budapest* **3**:148-153.
- BERCHICHE M., LEBAS F., OUHAYOUN J., 1995. Utilisation of field beans by growing rabbits. 1. Effects of supplementations aimed at improving the sulfur amino acid supply. *World Rabbit Science* **3**:35-40.
- BERCHICHE M., LOUNAOUCI G., LEBAS F., LAMBOLEY B., 1999. Utilisation of 3 diets based on different protein sources by Algerian local growing rabbits. *Cahiers Options Mediterraneennes* **41**:51-55.
- BEYNEN A. C., 1988. Growth performance by rabbits fed diets containing various levels of corn oil. 8th World Rabbit Congress, Budapest 3:230-234.
- BHATT R. S., 2000. Replacement of maize with rice polish in the feeding regime of weaner rabbits. 7th World Rabbit Congress, Valencia vol. C:125-130.
- Bhatt R. S., Bhasin V., Bhatia D. R., 1996. Growth patterns in soviet chinchilla weaners fed four levels of robinia leaves. *6th World Rabbit Congress, Toulouse* **1**:93-96.
- BHATT R. S., SAWAL R. K., 1999. Effect of replacement of groundnut cake with sunflower cake on the biological performance of broiler rabbits. *Egyptian Journal of Rabbit Science* **9**:43-52.
- Bhatt R. S., Sharma S. R., 2001. Nutrient utilisation and growth performance of broiler rabbits fed oat plant meal and tall fescue hay. *Asian-Australasian Journal of Animal Sciences* **14**:1228-1232.

- BIELANSKI P., NIEDZIADECK S., ZAJAC J., 1996b. Reproductive performance of rabbits fed on mixture containing untreated or treated straw. *6th World Rabbit Congress, Toulouse* **1**:107-110.
- BIELANSKI P., NIEDZIADECK S., ZAJAC J., CHOLEWA R., 1996a. Parameters of fattening and slaughter perforance of rabbits fed on mixture containing untreated or treated straw. 6th World Rabbit Congress, Toulouse 1:101-105.
- BIOBAKU W. O., EKPENYONG T. E., 1991. Effect of feeding graded levels of water lettuce and water hyacinth on the growth of rabbits. *Journal of Applied Rabbit Research* **14**:98-100.
- BLAS E., MOYA A., CERVERA C., FERNANDEZ CARMONA J., 1990. Use of a feed with milk for suckling rabbits. *Avances en Alimentacion y Mejora Animal* **30**:155-157.
- BLAS, C. DE, MATEOS, G.G., 1998. Feed formulation. in *The Nutrition of the Rabbit* (eds de Blas C.and Wiseman J.), Editor CABI Publishing, pp 241-253.
- BLAS, C. DE, WISEMAN, J., 1998. The Nutrition of the Rabbit. CABI publishing. Wallingford, UK.
- BONANNO A., ALICATA M. L., ALABISO M., LETO G., 1994. Dried artichoke bracts in the feeding of meat rabbits. *Rivista di Coniglicoltura* **31**:35-40.
- BONANNO A., LETO G., ALICATA M. L., GIACCONE P., ALABISO M., 1990. Triticale grain in the feeding of meat rabbits: comparison of varieties Mizar and Clercal. *Rivista di Coniglicoltura* **27**:47-52.
- BONOMI A., 1999. The use of dehydrated artichoke leaves meal (*Cynara scolymus* L.) in the feeding of meat rabbits. *Rivista di Coniglicoltura* **36**:53-58.
- CARO T. W., MANTEROLA B. H., 1995. Study of the use of agroindustrial byproducts in animal feeding. XI. Effects of replacement of a concentrate milled diet by tomato pomace and alfalfa hay in female Angora rabbits. *Avances en Produccion Animal* **20**:223-227.
- CARO T. W., MANTEROLA B. H., CERDA A. D., 1993. Studies of the use of agroindustrial by-products in animal feeding. V. Productive performance of growing meat rabbits fed with different levels of tomato pomace. *Avances en Produccion Animal* **18**:91-97.
- CARO T. W., PINTO C. M., RIVEROS V. E., 1991. Use of algarrobo (Prosopis chilensis) fruits in diets for meat production rabbits. *Avances en Produccion Animal* **16**:183-188.
- CARREGAL R. D., EIKO A., 1980a. Effect of the addition of vegetable oil to diets for growing rabbits. *Revista Latino-Americana de Cunicultura* 1:17-20.
- CARREGAL R. D., FANELLI S. M. L., FERRAZ J. B. S., 1980b. Partial and total substitution of the corn by sorghum in rations of growing rabbits. *2nd World Rabbit Congress; Barcelona* **2**:260-264.
- CARREGAL R. D., FONSECA T. Z., 1990. Partial or total replacement of soyabean meal protein by dried yeast protein in diets for growing rabbits. *Revista da Sociedade Brasileira de Zootecnia* **19**:197-200.
- CARREGAL R. D., TAKAHASHI R., 1987. Use of silkworm (*Bombyx mori* L.) chrysalis meal as a replacement for soyabean meal in the feeding of growing rabbits. *Revista da Sociedade Brasileira de Zootecnia* **16**:158-162.
- CASTELLINI C., CAVALLETTI C., BATTAGLINI M., 1991. Pea protein in the feeding of rabbits during fattening. *Rivista di Coniglicoltura* **28**:33-36.
- CAVANI C., BETTI M., BIANCHI M., PETRACCI M., 2003. Effects of the dietary inclusion of vegetable fat and dehydrated alfalfa meal on the technological properties of rabbit meat. *Veterinary Research Communications* **27**:643-646.

- CAVANI C., CHIARINI R., MANFREDINI M., 1987. Distillery effluents as animal feed: the use of condensed beet molasses stillage (CBMS) in female rabbit feeding. *World Review of Animal Production* **23**:29-32.
- CAVANI C., MAIANI A., MANFREDINI M., ZARRI M. C., 1988a. The use of dehulled grape seed meal in the fattening of rabbits. *Annales de Zootechnie* **37**:1-11.
- CAVANI C., MANFREDINI M., ZARRI M. C., 1988b. Use of distillery effluent in animal feeding: use of cane molasses concentrate in the feeding of rabbits. *Rivista di Coniglicoltura* **25**:37-41.
- CAVANI C., ZUCCHI P., MINELLI G., TOLOMELLI B., CABRINI L., BERGAMI R., 1996. Effects of wxhole soybeans on growth performance and body fat composition in rabbits. 6th World Rabbit Congress, Toulouse 1:127-133.
- CHAABANE K., BERGAOUI R., HAMMOUDA M. B., 1997. Use of different olive oil cakes in young rabbit feeding. *World Rabbit Science* **5**:17-21.
- CHAMPE K. A., MAURICE D. V., 1983. Response of early weaned rabbits to source and level of dietary fiber. *Journal of Animal Science* **56**:1105-1114.
- CHEEKE P. R., HARRIS D. J., PATTON N. M., 1983. Utilization of tropical forages and alfalfa meal by rabbits. *South African Journal of Animal Science* **13**:25-26.
- CHEEKE P. R., HARRIS D. J., PATTON N. M., 1984. Utilization of black locust (*Robinia pseudoacacia*) leaf meal by rabbits. *Nitrogen Fixing Tree Research Reports*:31.
- CHEEKE P. R., PATTON N. M., 1980. Alfalfa (lucerne) utilization by rabbits. *Commercial Rabbit* **8**:8-9.
- CHIOFALO L., LANZA E., MICARI P., STURNIOLO G., D'URSO G., 1984. Effect of using straw for feeding of meat rabbits. *Annali della Facolta di Medicina Veterinaria, Messina* 21:77-86.
- CHRIST B., 1999. Effect of dietary fat on fertility and rearing ability of does and on fattening performance of hybrid rabbits. *Archiv fur Geflügelkunde* **63**:133-135.
- COBOS A., HOZ L. D. L., CAMBERO M. I., ORDONEZ J. A., 1995. Sugar-beet pulp as an alternative ingredient of barley in rabbit diets and its effect on rabbit meat. *Meat Science* **39**:113-121.
- COLAGHIS S., XIOUFIS A., 1983. Molassed dried sugar beet pulp for feeding broiler rabbits. *Bulletin of the Hellenic Veterinary Medical Society* **34**:14-21.
- COLIN M., LEBAS F., 1976. Emploi du tourteau de colza, de la féverole et du pois dans les aliments pour lapins en croissance. *1rst World Rabbit Congress* : communication 24, 1-4.
- COLIN, M., 1978. Effect of supplement of methionine or cystine to diets deficient in sulphur amino acids on growth of rabbits [in Fench]. *Annales de Zootechnie* **27**:9-16.
- COLINA R., COPPINGS R., 1989. Feeding fresh liquid sweet whey to weaned New Zealand White rabbits. *Journal of Applied Rabbit Research* **12**:31-32.
- COPPINGS R. J., EKHATOR N. N., 1990. Incorporation of dehydrated whey in diets for growing rabbits. *Journal of Applied Rabbit Research* **13**:62-65.
- CORINO C., DELL'ORTO V., PEDRON O., POLIDORI F., RIGONI M., CASTROVILLI C. R., 1982. Estimation of the nutritive value and the effects of different amounts of dried whole barley in the diet on performances of meat rabbits. *Zootecnica e Nutrizione Animale* 8:289-299.
- Cossu M. E., Cumini M. A., Pagani J. L., Wawrzkiewicz M., Allocati P. A., Danelon J. L., Aguilar L., 2002. Substitution of wheat for corn in rabbit diets. Effects on productivity and meat quality. *Revista Argentina de Produccion Animal* 22:153-161.

- COSTANTINI F., CASTELLINI C., FANTOZZI P., 1988. Fibrous residues of tobacco in the feeding of rabbits. *Rivista di Coniglicoltura* **25**:49-51.
- CRESPI M. P. A. L. DE., COLL J. F. C., ITAGIBA M. D. G. O. R., SOUSA J. C. D.DE.D., GOMES A. V. DA. C., GONCALVES A. S., 1992a. The use of guandu hay (*Cajanus cajan*) as a fibre and protein source in the diet of growing rabbits. *Revista da Sociedade Brasileira de Zootecnia* 21:28-32.
- Crespi M. P. A. L. DE., Coll J. F. C., Sousa J. C. D. DE, Gomes A. V. d. C., Goncalves A. S., 1992b. Use of perennial soya (Neonotonia wightii) as a source of fibre and protein for growing rabbits. *Revista da Sociedade Brasileira de Zootecnia* **21**:23-27.
- CRIZON NAVARRETE T. P., LEON VITERI V., 1991. Evaluation of four amounts of quinoa (*Chenopodium quinoa* W.) in diets for rabbits, in Tumbaco, Pichincha. *Rumipamba* **8**:15-28.
- CUCCHIARA R., 1989. Sulla in the nutrition of meat rabbits. *Rivista di Coniglicoltura* **26**:39-42.
- Dahlan I., Rahafidah A. M., Salam A. A., Jamalullail M., 1994. Inclusion of oil palm leaf fibre in rabbit feed formulations. Sustainable animal production and the environment. Proceedings of the 7th AAAP Animal Science Congress, Bali, Indonesia, 11-16 July, 1994. Volume 3: poster papers. :239-240.
- DANIELS L. B., SHRIVER L. A., NELSON T. S., 1985. Evaluation of bermudagrass in diets of domestic rabbits. *Arkansas Farm Research* **34**:2.
- Demchenko M. P., Khramtsova E. M., 1985. Sorghum in pelleted feeds [for rabbits]. *Krolikovodstvo i Zverovodstvo*:9.
- DESHMUKH S. V., PATHAK N. N., 1989. Voluntary intake and dry matter digestibility of green fodders and tree leaves IN NEW ZEALAND WHITE RABBITS. *CHEIRON* **18**:223-225.
- DESHMUKH S. V., PATHAK N. N. , 1990. Voluntary intake, digestibility and nutritive value of green berseem (*Trifolium alexandrinum*) in rabbits. *Indian Journal of Animal Nutrition* **7**:233-234.
- DESHMUKH S. V., PATHAK N. N., RANDHE S. R., DESHMUKH S. S., 1993. Voluntary intake, digestibility and nutritive value of coastal bermuda grass (*Cynodon dactylon*) employed as sole feed for rabbits. *World Rabbit Science* 1:109-111.
- DESHMUKH S. V., PATHAK N. N., TAKALIKAR D. A., DIGRASKAR S. U., 1993. Nutritional effect of mulberry (Morus alba) leaves as sole ration of adult rabbits. *World Rabbit Science* **1**:67-69.
- EEKEREN N. J. M. v., JONG R. D., SLENDERS C. F., 1991. Evaluation of tea marc and coconut scraping wastage as rabbit feeds. *Journal of Applied Rabbit Research* **14**:270-272.
- EL-ADAWY M. M., 1997. Utilization of dry sediment of rumen liquor in rabbit nutrition. *Egyptian Journal of Rabbit Science* **7**:107-122.
- EL-ADAWY M. M., BORHAMI B. E., 1999. Leaf protein concentrate of water hyacinth and berseem in feeding of growing New Zealand rabbits. *Egyptian Journal of Rabbit Science* **9**:197-214.
- EL-ADAWY M. M., BORHAMI B. E., ABDEL-HAMID A. E. Y., 2000. Utilization of sugar beet pulp and fibrous residues of berseem and water hyacinth in feeding growing New Zealand White rabbits. *Egyptian Journal of Rabbit Science* **10**:1-17.
- EL-AYOUTY S. A., ABDEL-KHALEK A. E., EL-GHANY A. I. A., SHATIFA M. A., 2000. Effect of diets containing silage on growth performance, digestibility and carcass traits of growing rabbits. *Egyptian Journal of Nutrition and Feeds* **3**:43-56.

- EL-BAKI S. M. A., SONOBOL S. M., EL-GENDY K. M., ZAKY A. A., 1992. Leaf protein concentrate (LPC) from cassava and fodder beet as a protein source for rabbits. *Egyptian Journal of Rabbit Science* **2**:123-133.
- ELERAKY W. A., MOHAMED W. E., 1996. Growth performance, carcass traits and some related physiological changes of growing rabbits fed on acacia and water hyacinth. *Egyptian Journal of Rabbit Science* **6**:87-98.
- EL-GALIL K. A., KHALIL F. S., EL-GANZOURY E. H., 2001. Utilization of Leucaena leaf meal by growing rabbits under the recently reclaimed areas. *Egyptian Journal of Rabbit Science* **11**:151-165.
- EL-GAMAL M. F. A., 2003. Effect of dietary fibre sources on growth performance, nutrients digestibility, blood serum constituents and carcass traits in growing rabbits. *Veterinary Medical Journal Giza* **51**:71-82.
- EL-GENDY K. M., 1994. Cassava as a new animal feed in Egypt. 6. Complete pelleted diets containing cassava products for growing NZW rabbits. *Egyptian Journal of Rabbit Science* **4**:133-147.
- EL-GENDY K. M., 1999a. Effect of dietary inclusion of acacia leaves meal (*Acacia saligna*) on digestibility, growth performance and blood constituents of growing rabbits. *Egyptian Journal of Rabbit Science* **9**:271-283.
- EL-GENDY K. M., 1999b. Nutritional studies on some green forages in Egypt. 7. Utilization of sweet lupin (*Lupinus albus*) as green forage for feeding rabbits. *Egyptian Journal of Rabbit Science* **9**:257-269.
- EL-KERDAWY D. M. A., RASHWAN A. A., IBRAHIM H., EL-GENDY K. M., 1992. Digestibility, growth performance, carcass traits and some physiological aspects of growing New Zealand White rabbits as affected by partial substitution of concentrates with carrot-tops hay and feeding time. *Egyptian Journal of Rabbit Science* 2:61-71.
- EL-Rahim M. I. A., 1996. Evaluation of jack bean (*Canavalia ensiformis*, L.) as a new animal feed in Egypt. 1. Effect of dietary inclusion of raw or autoclaved jack bean seeds on growth, digestibility and blood parameters of rabbits. *Egyptian Journal of Rabbit Science* **6**:167-179.
- El-Razik W. A., 1996. Effect of substitution of tomato pomace for corn in growing rabbit diets on growth performance and carcass traits. Egyptian Journal of Rabbit Science **6**:79-86.
- EL-SAYAAD G. A. E., EL-MAHDY M. R., SOLIMAN A. S., 1995. Artichoke bracts as a food processing waste product in growing rabbit diets. *Egyptian Journal of Rabbit Science* **5**:125-133.
- EL-SAYAAD G. A. E., LUICK B. R., CHEEKE P. R., 1992. Preliminary evaluation of seed screening of orchard grass as a feed stuff for rabbits. *Egyptian Journal of Rabbit Science* **2**:73-80.
- EL-ZEINY M. A., HEMID A. A., ABDEL-AZEEM F., 1998. Evaluation of sugar beet pulp as a feedstuff for growing rabbits. *Annals of Agricultural Science (Cairo)*:739-755.
- ERDMAN M. D., 1986. Growth performance of rabbits fed arrowroot (*Maranta arundinacae*) forage and processing waste. *Nutrition Reports International* 33:1029-1034
- ESHIETT N. O., ADEMOSUN A. A., OMOLE T. A., 1980. Effect of feeding cassava root meal on reproduction and growth of rabbits. *Journal of Nutrition* **110**:697-702.
- ESONU B. O., UDEDIBLE A. B. I., 1993. The effect of replacing maize with cassava peel meal on the performance of weaned rabbits. *Nigerian Journal of Animal Production* **20**:81-85.

- ESONU B. O., UDEDIBIE A. B. I., HERBERT U., ODEY J. O., 1996. Comparative evaluation of raw and cooked jackbean (*Canavalia ensiformis*) on the performance of weaner rabbits. *World Rabbit Science* **4**:139-141.
- EVANS E., JEBELIAN V., RYCQUART W. C., 1983. Effects of partial replacement of fiber from alfalfa with fiber from other ingredients upon performances of fryer rabbits. *Journal of Applied Rabbit Research* **6**:6-8.
- FAJINMI A. O., ADEDEJI S. K., HASSAN W. A., BABATUNDE G. M., 1990. Inclusion of non-conventional feedstuffs in rabbit concentrate ration a case study of neem (Azadirachta indica) seeds. *Journal of Applied Rabbit Research* **13**:125-126.
- FALCÃO-E-CUNHA L., BENGLA FREIRE J. P., CONÇALVES A., 1996b. Effect of fat level and fiber nature on performances, digestibility, nitrogen balance and digestive organs in growing rabbits. 6th World Rabbit Congress, Toulouse 1:157-162.
- FALCÃO-E-CUNHA L., FREIRE J. P. B., 1996a. The use of Lathyrus cicera in rabbit diets : effect on growth, digestibility ands caecotrophy. *6th World Rabbit Congress, Toulouse* **1**:151-156.
- FALCÃO-E-CUNHA L., JORGE J., FREIRE J. P., PÉREZ H., 2000. Fat addition to feeds fors growing rabbits differing in fiber level and nature on growth rate, digerstibility and caecal fermentation patterns. 7th World Rabbit Congress, Valencia vol. C:191-198.
- FANIMO A. O., ODU S., 1996. Effect of ripe plantain peel (*Musa* cv) on growth and carcass performance of growing rabbits. *Pertanika Journal of Tropical Agricultural Science* **19**:89-93.
- FAYEK H. M., MADY Y. A., ABDEL-AZIZ A. A., EL-HOSSENY H. M., 1989. Urea treated sawdust in rabbit diets. *Journal of Applied Rabbit Research* **12**:185-189.
- FEDELI AVANZI C., JANNELLA G. G., 1976. Growth and thiocyanate level in blood and urine of rabbits fed with carrots, rape and cabbage. *1rst World Rabbit Congress, Dijon*:communication 28, 1-4.
- FEKETE S., . , 1985. A potential source of feed [for rabbits]. *Krolikovodstvo i Zverovodstvo* :9.
- FEKETE S., HEGEDUS M., 1986. On the utilization of enzymatically digested feathers in rabbit feeding. *Journal of Applied Rabbit Research* **9**:175-177.
- FERNANDEZ C. J., FRAGA M. J., 1992. Effect of sources and inclusion level of fat on growth performance. *Journal of Applied Rabbit Research* **15**:1071-1078.
- FERNANDEZ C., FRAGA M. J., 1996. Effect of fat inclusion in diets for rabbits on the efficiency of digestible energy and protein utilization. *World Rabbit Science* **4**:19-23.
- FERNANDEZ CARMONA J., CERVERA C., BLAS E., 1994. The effect of adding calcium soap to the diet and ambient temperature on growth of rabbits. *Investigacion Agraria, Produccion y Sanidad Animales* **9**:5-11.
- FERNANDEZ-CARMONA J., CERVERA C., BLAS E., 1996. High fat diets for rabbit breeding does housed at 30°C. 6th World Rabbit Congress, Toulouse 1:167-169
- FERNANDEZ-CARMONA J., SANTIAGO S., ALQUERDA I., CERVERA C., PASCUAL J. J., 2000. Effect of lucerne-based diets on the reproductive performance of rabbit does at high environmental temperatures. 7th World Rabbit Congress, Valencia vol. C:203-208.
- FOMUNYAM R. T., 1984. Cabbage and plantain/banana leaf in rabbit diets. 3rd World Rabbit Congress, Rome 1:415-422.
- FORTUN-LAMOTHE, L., GIDENNE, T., 2003. Besoins nutritionnels du lapereau et stratégies d'alimentation autour du sevrage. *INRA Prod. Anim.*,2003, **16**:39-47.

- FOTSO J. M., FOMUNYAM R. T., NDOPING B. N., 2000. Protein and energy sources for rabbit diets in Cameroon. 1 protein sources. *World Rabbit Science* **8**:57-60.
- FRANCK Y., COULMIN J. P., 1978. Utilisation de la paille de blé broyée comme source de cellulose dans les aliments lapins à l'engraissement; comparaison de 2 taux de cellulose. 2e Journées Rech. Cunicole en France 1:communication 10, 1-6.
- FRANCK Y., SEROUX M., 1980. Utilisation de la pulpe de beterave déshydratée par le lapin à l'engraissement. 2nd World Rabbit Congress, Barcelona 2.
- FURLAN A. C., FRAIHA M., SCAPINELLO C., MURAKAMI A. E., MOREIRA I., 1997. Soybean meal replacement by protein hydrolyzed cattle hide scrap meal in growing rabbit diets. *Revista UNIMAR* **19**:905-912.
- GARCIA G., GALVEZ J. F., BLAS J. C. DE, 1993. Effect of substitution of sugarbeet pulp for barley in diets for finishing rabbits on growth performance and on energy and nitrogen efficiency. *Journal of Animal Science* **71**:1823-1830.
- GARCIA G., GALVEZ J. F., BLAS J. C. DE., 1992. Substitution of barley grain by sugarbeet pulp in diets for finishing rabbits. 2. Effect on growth performance. *Journal of Applied Rabbit Research* **15**:1017-1024.
- GARCIA J., NICODEMUS N., CARABANO R., BLAS C. DE, 1999. Effect of the inclusion of defatted grape seed in feeds for growing rabbits on productive yield and estimation of their energy value. *ITEA Produccion Animal* **20**:469-471.
- GHAZALAH A. A., EL-SHAHAT A. A., EL-YAMNY A. T., 1998. Evaluation of some tropical forages for nutrition and meat production of rabbits. *Egyptian Journal of Rabbit Science* **8**:127-139.
- GIDENNE T., 1985a. Effect of feeding banana in addition to a concentrated diet on the digestion in growing rabbits. *Cuni-Sciences* **3**:1-6.
- GIDENNE T., 1985b. Feeding value of hibiscus for young rabbits reared under tropical or temperate climatic conditions. Preliminary results. *Cuni-sciences* **3**:23-28.
- GIDENNE T., 2000. Recent advance in Rabbit nutrition: emphasis on fibre requirements. *World Rabbit Science*, **8**:23-32.
- GIOFFRE F., PASSARI M., PROTO V., 1988A. Straw in the feeding of rabbits. *Rivista di Coniglicoltura* **25**:43-46.
- GIOFFRE F., PROTO V., FRANCIA A. DI, MAIOLINO A., 1988b. Biuret in the nitrogen nutrition of rabbits. *Rivista di Coniglicoltura* **25**:85-89.
- GIPPERT T., 1980. Utilization of different protein sources in rabbit feeding. 2nd World Rabbit Congress, Barcelona 2:193-203.
- GIPPERT T., LACZA S., HULLÁR I., 1988. Utilization of agricultural by-products in the nutrition of rabbit. 8th World Rabbit Congress, Budapest 3:163-172.
- GIPPERT T., SZABO-LACZA S., CSONKA L., 1984. Utilization of sunflower husk mix in feeding meat-type rabbits. *Allattenyesztesi es Takarmanyozasi Kutatokozpont Kozlemenyei*, 1982. :289-291.
- GOBY J. P., GIDENNE, SEGURA M., ROCHON J. J., MARAFICAO E., 2001. Use of dessicated lettuce for rabbit feeding: nutritional value and economical interest. *9e Journées Rech. Cunicole Paris*: 73-76.
- GOBY J. P., GIDENNE, SEGURA M., ROCHON J. J., MONVOISIN N., 2003. Use of lettuce dehydrated at low temperature for the rabbit feeding: impact on growth, digestion and heath status. *10e Journées Rech. Cunicole Paris*: 25-28.
- GOMEZ-DE-VARELA A., HARRIS D. J., CHEEKE P. R., PATTON N. M., 1983. Evaluation of perennial peanut (*Arachis glabrata*) and kudzu (*Pueraria phaseoloides*) as feedstuffs for rabbits. *Journal of Applied Rabbit Research* **6**:97-98.

- GOWDA S. K., SASTRY V. R. B., KATIYAR R. C., 2000. Nutritional efficacy of New Zealand White rabbits fed processed neem (Azadirachta indica) kernel meal as a protein supplement. *International Journal of Animal Sciences* **15**:95-98.
- GOWDA S. K., SASTRY V. R. B., KATIYAR R. C., AGRAWAL D. K., 1997. Wool traits in Angora rabbits fed different vegetable protein supplemented diets. *Indian Journal of Veterinary Research* **6**:24-30.
- GRANDI A., 1978. Aquatic plants in the feeding of rabbits. The hydrophyte *Potamogeton natans* L. var. *fluitans* Roth. in feeds for rabbits. *Coniglicoltura* **15**:31-33.
- GRANDI A., 1981a. Use of water hyacinth (*Eichhornia crassipes*) in diets for rabbits. *Coniglicoltura* **18**:43-48.
- GRANDI A., 1981b. Use of industrial waste of the vegetable marrow (*Cucurbita pepo* L.) for feeding rabbits. *Coniglicoltura* **18**:27-31.
- GRANDI A., 1993. Use of Bromus catharticus in the nutrition of rabbits. *Rivista di Coniglicoltura* **30**:41-43.
- GRANDI A., ANGELIS A. DE , 1983b. Residues of sweet pepper (*Capsicum annuum* L.) in diets for meat rabbits. *Coniglicoltura* **20**:29-32.
- GRANDI A., ANGELIS A. DE, 1983c. Use of agricultural and industrial byproducts in animal husbandry. Residues of eggplant (*Solanum melongena* L.) in the production of meat rabbits. *Coniglicoltura* **20**:47-50.
- Grandi A., Angelis A. de. , 1983d. Use of agricultural and industrial products for feeding animals. Waste from processing of peas (*Pisum sativum L.*) for feeding fattening rabbits. *Coniglicoltura* **20**:45-48.
- Grandi A., Battaglini M., 1988. Birdsfoot trefoil (*Lotus corniculatus* L.) in rabbit feeding. *Rivista di Coniglicoltura* **25**:57-60.
- GRANDI A., BATTAGLINI M., 1988. *Trifolium pratense* L. hay in diets of growing rabbits. *4th World Rabbit Congress, Budapest* **3**:123-131.
- GRANDI A., CAGIOTTI M. R., 1985. *Psophocarpus tetragonolobus* meal in diets for growing rabbits. *Zootecnica e Nutrizione Animale* **11**:427-436.
- Grandi A., Marzetti P., Blasi F., 1983a. Water hyacinth (*Eichhornia crassipes*) meal for feeding rabbits: digestibility, nutritive value and productive performances. *Zootecnica e Nutrizione Animale* **9**:297-309.
- GUALTIERI M., RAPACCINI S., BALLONI W., 1988. Effects of the inclusion of *Azolla filiculoides* meal in feeds for growing rabbits. *Rivista di Coniglicoltura* **25**:55-58.
- GUERMANDI M., 1999. A place for straw in feeding. Rivista di Coniglicoltura 36:47-49.
- GUPTA H. K., ATRAJA P. P., 1996. Influence of mimosine and 3-hydroxy 4(1H)pyridone fed through *Leucaena leucocephala* leaf meal on growth and nutrient utilization in meat rabbits. *6th World Rabbit Congress, Toulouse* **1**:191-193.
- GUPTA J. J., DAS A., YADAV B. P. S., 1995. Utilization of Job's tears (*Coix lachryma*) grain in rabbit ration. *Indian Journal of Animal Nutrition* **12**:201-204.
- GUTIERREZ I., ESPINOSA A., GARCIA J., CARABANO R., BLAS C. DE, 2003. Effect of protein source on digestion and growth performance of early-weaned rabbits. *Animal Research* **52**:461-471.
- HALGA M., 1974. Nutritive value of feeds for domestic rabbits. *Lucrari Stiintifice, Institutul Agronomic, Iasi, II*:25-26.
- HANDA M. C., SAPRA K. L., SHINGARI B. K., 1996. Effect of feeding extruded hatchery waste on the performance of Soviet Chinchilla rabbits. *World Rabbit Science* **4**:89-92.
- HARRIS D. J., 1980. Comparing alfalfa, safflower meal, beet pulp and grape pomace as roughage sources. 2nd World Rabbit Congress, Barcelona 2:176-180.

- HARRIS D. J., CHEEKE P. R., PATTON N. M., 1981a. Effect of feeding amaranthus, sunflower leaves, Kentucky bluegrass and alfalfa to rabbits. *Journal of Applied Rabbit Research* **4**:48-50.
- HARRIS D. J., CHEEKE P. R., PATTON N. M., 1984. Evaluation of black locust leaves for growing rabbits. *Journal of Applied Rabbit Research* **7**:7-9.
- HARRIS D. J., CHEEKE P. R., TELEK L., PATTON N. M., 1981b. Utilization of alfalfa meal and tropical forages by weanling rabbits. *Journal of Applied Rabbit Research* 4:4-9
- HEMID A. A., EL-ZEINY M. A., ABDEL-AZEEM F., 1995. Effects of dietary fat and/or oil on rabbit productive performance under intensive meat production. *Egyptian Journal of Rabbit Science* **5**:77-88.
- HERBERT U., 1998. Reproductive performance of rabbit does fed diets containing Gliricidia leaf meal from conception through weaning of kits. *Nigerian Journal of Animal Production* **25**:163-168.
- HUANG L. G., NING Y. W., XI J. F., 1990. Studies on microbe fermented rice straw used as rabbit feed. *Jiangsu Journal of Agricultural Sciences* **6**:60-65.
- HUANG X., ZHENG Z., FANG J., WU J., FU C., 1998. Nutrition improvement for rabbits by feeding orchard-growing forage on hilly red soils. *Journal of Fujian Academy of Agricultural Sciences* **13**:102-107.
- IBRAHIM M. R. M., EL-NAGMY K. Y., FARGHLY S. M., 1999. Effect of replacement of barley by dried barley radicle with or without kemzyme on performance of growing male rabbits. *Egyptian Journal of Rabbit Science* **9**:61-71.
- IGWEBUIKE J. U., ANUGWA F. O. I., MUSTAPHA I., 1999. Utilization of Acacia albida pods for rabbit feeding. 1. Effects on growth and organ weights of growing rabbits. *International Journal of Animal Sciences* **14**:231-236.
- IKURIOR S. A., AKEM J. D. , 1998. Replacing maize with cassava root meal or its mixture with brewers yeast slurry in rabbit diets. *Nigerian Journal of Animal Production* **25**:31-35.
- ISMAIL F. S. A., GIPPERT T., 1999. Using sunflower by-product in growing rabbit diets. *Egyptian Journal of Rabbit Science* **9**:285-295.
- JENSEN N. E., 1984. Sodium hydroxide treated straw in growing feeds. *Commercial Rabbit* 12:19.
- JENSEN N. E., 1989. Feeding experiments [on rabbits]. *Beretning fra Statens Husdyrbrugsforsog*: 13-27.
- JENSEN N. F., 1992. The rabbit test station 1991-92. Crossbreeding and feeding experiments. *Beretning fra Statens Husdyrbrugsforsog* :39 pp.
- JHAM G. N., TORRES R. A., CAMPOS L. G., 1987. Evaluation of pressed residue from cassava leaves as a feedstuff for rabbits. *Journal of Applied Rabbit Research* **10**:35-37.
- JOHNSTON N. P., BERRIO L. F., 1984. Comparative effects of cottonseed, soybeans, safflower seedsand flax seeds on the performance of rabbits and guinea pigs. 3rd World Rabit Congres, Rome 1:408-414.
- JOHNSTON N. P., BERRIO L. F., 1985. Comparative effects of cottonseed, soyabeans, safflower seeds and flax seeds on the performance of rabbits and guinea pigs. *Journal of Applied Rabbit Research* **8**:64-67.
- JOHNSTON N. P., UZCATEGUI M. E., 1988. Effect of *Lupinus mutabilis* (chocos) on the lactation and growth of rabbits and guinea pigs. *4th World Rabbit Congress, Budapest* **3**:132-140.

- JOSEPH J. K., AWOSANYA B., ADEOYE P. C., OKEKUNLE M. R., 2000. Influence of graded levels of toasted bambara groundnut meal on rabbit carcass characteristics. *Nigerian Journal of Animal Production* **27**:86-89.
- Kennou S., Lebas F., 1990. Growth performances of local Tunisian rabbits fed on diets with fresh or ensiled green forage. *Cuni-Sciences* **6**:31-39.
- KESSLER B., PALLAUF J., 1993. Influence of various dietary fat supplements on fattening and slaughter performance of rabbits. *Zuchtungskunde* **65**:229-236.
- KING J. O. L., 1981. Fat levels in rabbit diets. *British Veterinary Journal* **137**:203-207.
- KING J. O. L., 1983. The inclusion of ground hay, straw and paper in the diets fed to growing rabbits. *Laboratory Animals* **17**:100-103.
- KUZNIEWICZ J., WOJSYK-KUZNIEWICZ A., 1979. Assessment of slaughter value of rabbit broilers fed on new diets. *Przemysl Spozywczy* **33**:183-184.
- LANZA E., SINATRA M. C., FASONE V., D'URSO G., 1986. Effect of using maize, barley and triticale in single-cereal diets for fattening rabbits. *Rivista di Coniglicoltura* **23**:47-48.
- LASWAI G. H., LUGEMBE K. K. M., MOSHA R. D., KIMANBO A. E., 2000. Estimate of nurtrients digestibility, growth performance, slaughter traits and blood parameters in rabbit fed diets containing various levels of *Cortalaria ochroleuca*. *7th World Rabbit Congress, Valencia* **vol. C**:305-311.
- LEBAS F., 1976. Utilisation of waste paper in fattening rabbit's feeding. Experimental results. *Cuniculture* **3**:65-68.
- LEBAS F., 1988. First attempt to study chick peas utilization in growing rabbits feeding. 4th World Rabbit Congress, Budapest 3:244-248.
- LEBAS F., COLIN M., 1977. Rapeseed oilmeal in feeds for growing rabbits. Effect of husking. *Annales de Zootechnie* **26**:93-97.
- LEBAS F., COLIN M., MERCIER P., TRÉMOLIÈRES E., 1978. Utilisation de la paille traitée par la soude dans l'alimentation des lapins. 2e Journées Rech. Cunicole en France 1:communication 11, 1-6.
- LEBAS F., COLIN M., MERCIER P., TREMOLIERES E., 1979. Use of straw treated with sodium hydroxide in rabbit feeding. *Annales de Zootechnie* **28**:132.
- LEBAS F., DJAGO A. Y., 2001. Wheat straw nutritional value for growing rabbits. 9e *Journées Rech. Cunicole Paris*:77-80.
- LEBAS F., FORTUN-LAMOTHE L., 1996. Effects of dietary energy level and origin (starch vs oil) on performance of rabbit does and their litters: average situation after 4 weanings. 6th World Rabbit Congress, Toulouse 1:217-222.
- LEBAS F., GIDENNE T., PEREZ J. M., LICOIS D., 1998. Chapter 11: Nutrition and pathology. in *The Nutrition of the Rabbit* (eds de Blas C.and Wiseman J.), Editor CABI Publishing, pp 197-213.
- LEBAS F., OUHAYOUN J., DELMAS D. , 1988. Effects of hempseed oil cake introduction in rabbit feeding on growth performance and carcass quality. 8TH World Rabbit Congress 3:254-260.
- LEBAS F., SEROUX M., FRANCK Y., 1981. Use of rapeseed hulls in the feeding of growing rabbits. 1. Fattening performance. *Annales de Zootechnie* **30**:313-323.
- LEBAS, F., 2003. Besoins vitaminiques du lapin. In: Les vitamines dans les industries agroalimentaires (Edit. Bourgeois, C.). Lavoisier Éditions Tec&Doc, Paris, pp.583-595.
- LEON R. P. DE., GUZMAN G., FORTE C., 1999. Citrus meal in pelleted diets for fattening rabbits. *Cuban Journal of Agricultural Science* **33**:157-164.
- LETO G., ALICATA M. L., BONANNO A., BACCHI M. , 1984. Trials on the use of dried orange and lemon pulp for feeding meat rabbits. *Coniglicoltura* **21**:53-58.

- LETO G., GIACCONE P., 1981. Trials on the use of olive cake for feeding rabbits. *Zootecnica e Nutrizione Animale* **7**:185-192.
- LINDEMAN M. A., BRIGSTOCKE T. D. A., WILSON P. N., 1982. A note on the response of growing rabbits to varying levels of sodium hydroxide-treated straw. *Animal Production* **34**:107-110.
- LIU M. L., TANG L. M., YAN J. P., LIU Y. G., 1987. Effects of concentrated rapeseed protein on growing rabbits. *Chinese Journal of Animal Science* :20-22.
- LOPEZ E., PRO A., BECERRIL C., PEREZ P., CUCA M., 1996. Common vetch (*Vicia sativa*) for feeding does. *6th World Rabbit Congress, Tooulouse* 1:227-230.
- MAERTENS L., DUCATELLE R., GROOTE G. DE, 1994. Influence of the dietary inclusion of vinasse containing a high content of yeast cellwalls, on the performance of growing rabbits. *World Rabbit Science* **2**:15-19.
- MAERTENS L., SALIFOU E., 1997. Feeding value of brewer's grains for fattening rabbits. *World Rabbit Science* **5**:161-165.
- MAITRE I., AMAND G., FRANCHET A., BROUET R., 1990. Intérêt de l'association de protéagineux féverole/lupin dans l'alimentation des lapins de chair. *5e Journées Rech. Cunicole en France* **2**:communication 59, 1-9.
- MARAI I. F. M., RADWAN M. A. H., NOWAR M. S., ALLAM E. A., ABOUL-ELA S. S., 1979. Feeding rabbits on different levels and sources of roughages and concentrates. *Zagazig Journal of Agricultural Research* **6**:153-168.
- MARTINA C., 1983. New forage sources rich in cellulose for feeding rabbits. *Revista de Cresterea Animalelor* **33**:9-12.
- MARTINEZ PASCUAL J., FERNANDEZ CARMONA J., 1980. Citrus pulp in diets for fattening rabbits. *Animal Feed Science and Technology* **5**:23-31.
- MASOERO G., AUXILIA M. T., BERGOGLIO G., TOPPINO P. M., BOSSI M. G., LIZZOLI G., CONTARINI G., 1982. Dried whey, hydrolysed whey and Streptococcus faecium in diets for growing rabbits. *Annali dell'Istituto Sperimentale per la Zootecnia* **15**:85-99.
- MASOERO G., AUXILIA M. T., CAROPPO S., TOPPINO P. M., 1980. The use of lactic acid bacteria in rabbit diets containing dried whey. *Annali dell'Istituto Sperimentale per la Zootecnia* **13**:37-51.
- MASOERO G., CHICCO R., FERRERO A., RABINO I., 1984. Rice and wheat straws untreated or alkali treated, in diets for broiler rabbits. *3rd World Rabbit Congress, Rome* 1:355-362.
- MASOERO G., TERRAMOCCIA S., AUXILIA M. T., 1979. The digestibility of diets containing whole dried maize meal for growing rabbits. *Annali dell'Istituto Sperimentale per la Zootecnia* **12**:145-153.
- MCNITT J. I., CHEEKE P. R., PATTON N. M., 1982. Feeding trials with cottonseed meal as a protein supplement in rabbit rations. *Journal of Applied Rabbit Research* **5**:1-5.
- MEENA S., FAROOQ M., SATYANARAYAN K., RAJESHWARI Y. B., SINGH K. C., 1999. Nutritional evaluation of mulberry leaves in broiler rabbits. *Indian Veterinary Journal* **76**:625-629.
- MEIRELLES C. F., ZINSLY C. F., 1979. Addition of oil to rations with different amounts of protein for growing rabbits. *Boletim de Industria Animal* **36**:101-118.
- Mendes A. A., Funari S. R. C., Nunes J. R. V., Spers A., 1980. Increasing levels of ramie hay in diets for growing rabbits. *Revista Latino-Americana de Cunicultura* 1:27-35.
- MERCIER P., SEROUX M., FRANCK Y. , 1980. Utilisation de la paille par le lapin à l'engraissement. 2nd World Rabbit Congress, Barcelona 2:136-146.

- MESINI A., 1994. Sunflower seeds in the feeding of rabbits. *Rivista di Coniglicoltura* **31**:37-39.
- MORELAND A. F., COLLINS B. R., HANSEN C. A., O'BRIEN R., 1991. Wastewater grown waterhyacinth as an ingredient in rabbit food. *Journal of Aquatic Plant Management* **29**:32-39.
- MOTTA FERREIRA W., FRAGA M. J., CARABANO R., 1996. Inclusion of grape pomace, in substitution for alfalfa hay, in diets for growing rabbits. *Animal Science* **63**:167-174
- MOURA A. S. A. M. T., COSTA C., CLAUDINEI, PARRE C., 1992. Comparison of hay of *Cajanus cajan* and of *Cynodon dactylon* cv. Coast Cross for growing rabbits. *Veterinaria e Zootecnia* **4**:69-75.
- MTENGA L. A., LASWAI G. D., 1994. *Leucaena leucocephala* as feed for rabbits and pigs: detailed chemical composition and effect of level of inclusion on performance. *Forest Ecology and Management* **64**:249-257.
- Mur J. P., Massaete E. S., 1992. Growth response in rabbits to various levels of Leucaena leucocephala fed fresh with a wheat bran diet. Journal of the Zimbabwe Society for Animal Production **4**:131-134.
- Mur J. P., Massaete E. S., 1995. Reproductive performance of rabbits fed wheat bran with tropical forages or *Leucaena leucocephala*. *World Rabbit Science* **3**:91-93.
- MUZIC S., BOZAC R., ZIVKOVIC J., RUPIC V., BLAZEVIC R., 1994. Fattening Hyla rabbits with a residual substratum from the production of edible mushroom *Pleurotus pulmonarius*. *World Rabbit Science* **2**:61-66.
- NASR A. S., ATTIA A. I., RASHWAN A. A., ABDINE A. M. M., 1996. Growth performance of New Zealand White rabbits as affected by partial replacement of diet with Nigella sativa or soybean meals. *Egyptian Journal of Rabbit Science* **6**:129-141.
- NEGI S. S., GOEL G. C., 1985. Voluntary intake and nutritive value of *Grewia optiva* and *Bauhinia variegata* tree leaves supplemented to a diet of Angora rabbits. *Indian Journal of Animal Sciences* **55**:502-504.
- NGODIGHA E. M., OGBARO A. T., 1995. Replacement value of garri sievate for maize in rabbit rations. *Agrosearch* **1**:135-138.
- NGODIGHA E. M., SESE B. T., ADELEYE I. O. A., 1994. Dietary fibre utilization and growth performance of young rabbits fed on rabbit concentrates replaced with graded levels of groundnut haulms. *Journal of Applied Animal Research* **5**:21-27.
- NGOUPAYOU J. D. N., MAIORINO P. M., SCHURG W. A., REID B. L., 1985. Jojoba meal in rabbit diets. *Nutrition Reports International* **31**:11-19.
- NIEDZWIADECK S., KAWINSKA J., 1976. An attempt at supplementating rabbit feed with urea. 1rst World Rabbit Congress, Dijon: communication 27, 1-4.
- NIEDZWIADEK S., KAWINSKA J. , 1981. Suitability of krill meal for fattening rabbits. *Roczniki Naukowe Zootechniki* **8**:245-253.
- NIEDZWIADEK S., KAWINSKA J., TUCZYNSKA J., 1975. Urea in feeds for rabbits. *Roczniki Naukowe Zootechniki* **2**:201-207.
- NIEVES D., FARINAS S., MUNOZ A., TORREALBA E., RODRIGUEZ N., 1996. Use of *Arachis pintoi* and *Pennisetum purpureum* in the feeding of fattening rabbits. *Revista Unellez de Ciencia y Tecnologia, Produccion Agricola* 14:82-91.
- NIEVES D., QUINTERO M., MENDOZA M., 1995. Inclusion of a probiotic and non-conventional feedstuffs (Cajanus cajan, Leucaena leucocephala) in meal diets

- for fattening rabbits. Revista Unellez de Ciencia y Tecnologia, Produccion Agricola 13:35-44.
- NIEVES D., RODRIGUEZ J., CARVAJAL L., 1998. Inclusion of probiotic and non conventional feedstuffs in mash diets for fattening rabbits: Leucaena leucocephala and Arachis pintoi. Revista Unellez de Ciencia y Tecnologia, Produccion Agricola 16:37-48.
- NIEVES D., SANTANA L., BENAVENTA J., 1996. Increasing levels of *Arachis pintoi* (Krap. and Greg.) in fattening rabbit's mash diets. *Revista Unellez de Ciencia y Tecnologia, Produccion Agricola* **14**:33-43.
- NIZZA A., SARUBBI F., MONIELLO G., CUTRIGNELLI M. I., LELLA T. DI, 1997. Use of feeds with different content and botanical original starch for rabbits. Digestive utilization and productive performance before and after slaughter. *Rivista di Scienza dell'Alimentazione* **26**:62-71.
- NOWAR M. S., AL-SHAWABKEH K., NISSOUR H., 1994. Evaluation of oak acorn (Quercus coccifera) as untraditional energy feedstuff for complete substitution of corn grains in fattening rabbit ration. *Cahiers Options Mediterraneennes* 8:177-182.
- OANH D. K., 1983. Utilization of by-products from rice processing in rabbit feed. *Rizsfeldolgozasi mellektermekek alkalmazasa nyultapokban.* :167pp.
- ODUGUWA O. O., FANIMO A. O., ONYEKWERE E. A., OYENUGA A. B., SOBOGUN G. O., 2000. Utilisation of raw and autoclaved whole pods of *Samanea saman* (Jacq Merril) by the domestic rabbit. *Tropical Agriculture* **77**:194-198.
- OGAI V. O., BOGOMOLOV A. D. , 1987. Pellets from rape [in diets for rabbits]. *Krolikovodstvo i Zverovodstvo* :15.
- OKEKE G. C., 1983. Urea utilization by growing rabbits. *East African Agricultural and Forestry Journal* **49**:53-56.
- OKEKE G. C., OJI U. I., UBA F. N., 1986. Maize replacement values of cassava peels in the diet of growing rabbits. *Beitrage zur Tropischen Landwirtschaft und Veterinarmedizin* **24**:221-226.
- OLUMEYAN D. B., AFOLAYAN S. B., BAWA G. S., 1996. Effect of graded levels of dried rumen ingesta on the performance of growing rabbits fed concentrate diets. *Bulletin of Animal Health and Production in Africa* **44**:219-223.
- OMOLE T. A., 1979. The influence of dietary fat and supplementary copper on live and carcass qualities of growing rabbits. *Nigerian Journal of Agricultural Sciences* **1**:31-38.
- OMOLE T. A., AJAYI T. A., 1976b. Evaluation of brewers dried grains in the diets of growing rabbits. *Nutrition Reports International* **13**:383-387.
- OMOLE T. A., OKE O. L., 1979. The replacement value of pressed crop of amaranthus or brewers' dried grains for corn in rabbit diet. A preliminary report. *Nutrition Reports International* **20**:587-592.
- OMOLE T. A., OKE O. L., MFON B. P., 1976a. Carrot leaf protein: preliminary trials with whole leaf using rabbits. *Nutrition Reports International* **14**:173-178.
- OMOLE T. A., ONWUDIKE O. C., 1981b. Investigations of the treatment of sawdust for rabbit feeding. 1. Effect of sodium hydroxide treatment. *Animal Feed Science and Technology* **6**:43-50.
- OMOLE T. A., OYELESE J. O., OKE O. L., 1982. The influence of supplemental amino acids on the utilization of varying dietary proteins by fryer rabbits. *Nutrition Reports International* **25**:491-497.

- OMOLE T. A., SONAIYA E. B., 1981a. The effect of protein source and methionine supplementation on cassava peel meal utilization by growing rabbits. *Nutrition Reports International* **23**:729-737.
- ONIFADE A. A., TEWE O. O., 1993. Alternative tropical energy feed resources in rabbit diets: growth performance, diet's digestibility and blood composition. *World Rabbit Science* **1**:17-24.
- ONWUDIKE O. C., 1995. Use of the legume tree crops *Gliricidia sepium* and *Leucaena leucocephala* as green feeds for growing rabbits. *Animal Feed Science and Technology* **51**:153-163.
- ONWUKA C. F. I., ADELIYI G. O., BIOBAKU W. O., ADU I. F., 1992. Leucaena leucocephala leaves in rabbit diets. Leucaena Research Reports 13:65-67.
- OROZCO ALMANZA M. S., ORTEGA CERRILLA M. E., PEREZ-GIL ROMO F., 1988. Use of earthworms as a protein supplement in the diet of rabbits. *Archivos Latinoamericanos de Nutricion* 38:946-955.
- Parigi-Bini R., Chiericato G., 1980. Utilization of grape marc by growing rabbits. 2nd World Rabbit Congress, Barcelona 2:204-213.
- Parigi-Bini R., Cinetto M., Carotta N., 1984. Digestibility and nutritive value of Leucaena leucocephala in growing rabbits. *3rd World Rabbit Congress, Rome* 1:399-407.
- PARIGI-BINI R., XICCATO G., DALE ZOTTE A., CARAZZOLO A., 1994. Influence of different levels of dietary fibre on digestibility, performance and carcass and meat quality of rabbits. 6e Journées Rech. Cunicole en France 2:347-354.
- Partridge G. G., Radwan M., Allan S. J., Fordyce R., 1984. The use of treated straws in diets for growin rabbits. *3rd World Rabbit Congress, Rome* **1**:347-354.
- PASCUAL J. J., CERVERA C., FERNANDEZ-CARMONA J., 2002. A feeding programme for young rabbit does based on lucerne. *World Rabbit Science* **10**:7-13.
- Pascual J. J., Fonfría M. J., Alquedra I., Cervera C., Fernández-Carmona J., 2000. Use of lucerne-based diet on reproductive rabbit does. *7th World Rabbit Congress, Valencia* vol. C:379-384.
- PAYNE M., BRYANT M. J., OWEN E., CAPPER B. S., WOOD J. F., MACHIN D. H., BUTCHER C., 1983. The effect of diets containing 50% roughage on performance and digestibility in growing rabbits. *Tropical Animal Production* **8**:269-275.
- PAYNE M., OWEN E., CAPPER B. S., WOOD J. F., 1984. Sodium hydroxide and ammonia treated wheat straw in diets for growing rabbits. *Tropical Animal Production* **9**:264-270.
- PEREZ J. M., 1994. Digestibility and energy value of dehydrated lucerne meal for rabbit: influence of chemical composition and technological process. 6e *Journées Rech. Cunicole en France* **2**:355-364.
- PEREZ J. M., GIDENNE T., 1997. Nutritive value of Milurex for rabbits. *Cuniculture* (*Paris*):15-18.
- PEREZ J. M., LAMBOLEY B., BÉRANGER C., 1998. Digestibility and energy value for rabbits of individual or mixed batches of dehydrated alfalfa. *7e Journées Rech. Cunicole Lyon*:129-132.
- PEREZ J. M., LEBAS F., LAMBOLEY B., 1990. Feeding value of lucerne dehydrated after ensiling: digestibility, protein efficiency and utilisation by growing rabbits. *5e Journées Rech. Cunicole en France* **2**:communication 58, 1-13.
- PINHEIRO V., GIDENNE T., 2000. Substitution of wheat by potato starch for growing rabbits: effect on performances, digestion and health. *7th World Rabbit Congress*, **vol. C**:391-398.

- POLIDORI F., DELL'ORTO V., CORINO C., 1982. Use of dried whole maize as a substitute for hay in diets for meat rabbits. *Coniglicoltura* **19**:25-27.
- POLIDORI F., DELL'ORTO V., CORINO C., PEDRON O., BIGLI A., 1984. Impiego di disidrati di cereali integrali in diete ad alta energia per coniglio da carne. *3rd World Rabbit Congress, Rome* **1**:339-346.
- POMYTKO V. N., MOROZOVA K. N., KALUGIN Y. A., 1975. Straw meal: a supplementary feed source. *Krolikovodstvo i Zverovodstvo*:25-26.
- PRASAD R., SANKHYAN S. K., KARIM S. A., 1998. Growth performance of broiler rabbits fed on diets containing various types of protein supplements. *Indian Journal of Animal Production and Management* **14**:227-230.
- PRASAD R., SINGH R. N., 1996. Effect of feeding water soaked corn and fodder on performance and digestibility of nutrients in Angora rabbits. *Indian Journal of Animal Nutrition* **13**:162-166.
- PRAWIRODIGDO S., CHEEKE P. R., PATTON N. M., 1985. The use of waste cabbage with various levels of cassava root supplementation for feeding weaning rabbits. *Journal of Applied Rabbit Research* **8**:165-166.
- RADWAN M. A. H., PARTRIDGE G. G., ALLAN S. J., FORDYCE R., 1983. The use of treated straws in diets for growing rabbits. *Agricultural Research Review* **61**:41-52.
- RADWAN M. A. H., PARTRIDGE G. G., ALLAN S. J., FORDYCE R. A., 1989. Cassava root meal in diets for growing rabbits. *Tropical Animal Health and Production* **21**:32-36.
- RADWAN M. S., 1994. Use of sawdust as a source of dietary fibre in rabbit diets. *Cahiers Options Mediterraneennes* **8**:189-196.
- RAHARJO Y. C., CHEEKE P. R., PATTON N. M., 1990. Evaluation of rice hulls as a fiber source for weanling rabbits. *Journal of Applied Rabbit Research* **13**:10-13.
- RAHARJO Y. C., CHEEKE P. R., TANGENDJAJA B., PATTON N. M., 1988. Evaluation of tropical forages and by-product feeds for rabbit production: 2. Rice bran: nutritive value, utilization and effect of supplements. *Journal of Applied Rabbit Research* 11:257-263.
- RAIMONDI R., AUXILIA M. T., MARIA C. D., MASOERO G., 1976. The effect of adding fat to the feed on meat production by rabbits. *Coniglicoltura* **13**:37-45.
- RAJU K. V. S., SREEMANNARAYANA O., 1995. Feeding of Ulva fasciata to rabbits feed efficiency and carcass characteristics. *Indian Veterinary Journal* **72**:1331-1332.
- RAMCHURN R., DULLULL Z. B., RUGGOO A., RAGGOO J., 2000. Effects of feeding star grass (*Cynodon plectostachyus*) on growth and digestibility of nutrients in the domestic rabbit. *Livestock Research for Rural Development* **12**:1-6.
- RANDHIR S., SAWAL R. K., BHASIN V., BHATIA D. R., 1994. Nutrient utilization by rabbits on diets containing kudzu hay. *Indian Journal of Animal Nutrition* **11**:255-258.
- RAO K. S., REDDY M. R., REDDY G. V. N., 1986. Utilization of unconventional roughages in the formulation of complete feed for rabbits: effect on growth and carcass characteristics. *Indian Journal of Animal Nutrition* **3**:238-243.
- RATNAKUMAR J. N., RAJAN A., 1992. Goitrogenic effect of cassava in broiler rabbits. *Indian Journal of Animal Sciences* **62**:670-676.
- RAVINDRAN V., RAJADEVAN P., GOONEWARDENE L. A., RAJAGURU A. S. B., 1986. Effects of feeding cassava leaf meal on the growth of rabbits. *Agricultural Wastes* 17:217-224.
- REDDY K. J., REDDY M. B., 1993. Preliminary studies on Amaranthus (Amaranthus hypochondriacus) seed as a component of rabbit rations. *Livestock Adviser* **18**:27-31.

- RIDZWAN B. H., FADZLI M. K., ROZALI M. B. O., CHIN D. T. F., IBRAHIM B. M., FARIDNORDIN B. I., 1993. Evaluation of cocoa-pod husks on performance of rabbits. *Animal Feed Science and Technology* **40**:267-272.
- RIDZWAN B. H., GHUFRAN R., KASWANDI M. A., ROZALI M. B. O., 1995. Performance and carcass yield of NZW rabbits fed cocoa pod husk incorporated diets. *Journal of Applied Animal Research* **8**:91-96.
- ROBINSON K. L., CHEEKE P. R., KELLY J. D., PATTON N. M., 1986. Effect of fine grinding and supplementation with hay on the digestibility of wheat bran by rabbits. *Journal of Applied Rabbit Research* **9**:166-167.
- ROHILLA P. P., BUJARBARUAH K. M., 1999. Effect of subabul (*Leucaena leucocephala*) feeding on growth and physiology of rabbits. *Journal of Hill Research* **12**:135-137.
- ROHILLA P. P., BUJARBARUAH K. M., 2000a. Effect of banana leaves feeding on growth of rabbits. *Indian Veterinary Journal* **77**:902-903.
- ROHILLA P. P., BUJARBARUAH K. M., 2000b. Effect of feeding broom grass (Thysanolaena maxima) to rabbits. *Indian Journal of Animal Nutrition* **17**:87-89.
- ROHILLA P. P., BUJARBARUAH K. M., 2000c. Effect of Morus alba feeding on growth and physiological parameters of rabbits. *International Journal of Animal Sciences* **15**:9-12.
- ROJAS I., PARRA R., NEHER A., BENEZRA M., 1989. Use of a residue from tomato processing in feeding growing rabbits. *Informe anual, Universidad Central de Venezuela, Facultad de Agronomia, Instituto de Produccion Animal, 1987.* :34-35.
- Sahu B. B., Prasad V. S. S., 1990. Growth performance of Soviet Chinchilla fryers on rations with animal-meals. *Indian Journal of Animal Sciences* **60**:211-218.
- SAIKIA G., BARUAH K. K., 2000. Effect of feeding diets with graded levels of Ajar seed on the growth performance and nutrient utilization in rabbits. *World Rabbit Science* 8:71-74.
- SALSE A., CRAMPES F., RAYNAUD P., 1977. Détermination de la valeur alimentaire de l'urée donnée en perfusion intra-caecale chez le lapin. *Ann. Biol. anim. Biochim. Biophys.*, **17**:559-565.
- SANCHEZ W. K., CHEEKE P. R., PATTON N. M., 1983. Utilization of raw and heat-treated pinto beans by weanling rabbits. *Journal of Applied Rabbit Research* **6**:139-141
- SANCHEZ W. K., CHEEKE P. R., PATTON N. M., 1984. Evaluation of radish seeds as a feedstuff for rabbits. *Journal of Applied Rabbit Research* **7**:141-143.
- SANCHEZ W. K., CHEEKE P. R., PATTON N. M., 1984. The use of chopped alfalfa rations with varying levels of molasses for weanling rabbits. *Journal of Applied Rabbit Research* **7**:13-16.
- Sanjiv K., Bhatt R. S., 2000. Nutrient utilization and wool yield in Angora weaning rabbits fed on three levels of *Robinia* leaves. *Indian Journal of Animal Nutrition* **17**:171-174.
- Sarhan M. A., 1999. Sweet white lupin seeds (Lupinus albus) as protein source in the diets of growing New Zealand White rabbits. *Egyptian Journal of Rabbit Science* **9**:243-256.
- SASTRY V. R. B., MAHAJAN J. M., 1982. Comparative adequacy of supplementation of white clover hay with tree leaves and whole grains on the performance of New Zealand White rabbits. *Indian Journal of Animal Sciences* **52**:901-905.

- SAUVANT, D., PEREZ, J.M., TRAN, G., 2002. Tables de composition et de valeur nutritive des matières premières destinées aux animaux d'élevage. INRA Editions Paris, France
- SAWAL R. K., BHATIA D. R., BHASIN V., 1995. Incorporation of dried apple pomace in the diet of weaner rabbits. *Indian Journal of Animal Nutrition* **12**:167-169.
- SAWAL R. K., BHATIA D. R., BHASIN V., 1996. Incorporation of tomato pomace in the diet of rabbits. *Indian Journal of Animal Nutrition* **13**:35-38.
- SCAPINELLO C., ANTUNES E. B., MELO E. V. I., FURLAN A. C., JOBIM C. C., 2000. Nutritive value and utilization of Leucaena hays (*Leucaena leucocephala* e *Leucaena leucocephala* cv. Cunnigham) for growing rabbits. 7th World Rabbit Congress, Valencia vol. C:423-428.
- SCAPINELLO C., FALCO J. E., FURLAN A. C., FARIA H. G. DE, 2000. Performance of growing rabbits feeding on different levels of cassava foliage hay (*Manihot esculenta*, Crantz). *Ciencia Rural* **30**:493-497.
- SCAPINELLO C., FARIA H. G. DE., FURLAN A. C., MARTINS E. N., MOREIRA I., 1999. Performance of growing rabbits fed with different levels of restorative yeast (Saccharomyces sp), dried by rotative roller or by spray-dry. *Revista Brasileira de Zootecnia* **28**:334-342.
- SCAPINELLO C., FURLAN A. C., MOREIRA I., MURAKAMI A. E., 1996b. Use of rapeseed meal as part or total replacement of soyabean meal crude protein in diets for growing rabbits. *Revista da Sociedade Brasileira de Zootecnia* **25**:1102-1114.
- SCAPINELLO C., FURLAN A. C., MOREIRA I., MURAKAMI A. E., OLIVEIRA P. B. DE, 1996a. Use of spray-dried recovery yeast (Saccharomyces spp) for growing rabbits. *Revista UNIMAR* **18**:587-598.
- SCAPINELLO C., FURLAN A. C., OLIVEIRA P. B. DE, FARIA H. G. DE, PEDRO M. R. S., MACHADO R. M., 1997. Development of growing rabbit feeds with different levels of restorative yeast (Saccharomyces spp.) dried by spray-dry method. *Revista UNIMAR* **19**:913-921.
- SCHURG W. A., MAIORINO P. M., REID B. L., 1986a. Evaluation of guar (*Cyamopsis tetragonoloba* L.) meal as a protein source for rabbits. *Nutrition Reports International* **34**:1115-1120.
- Schurg W. A., Reed J. P., Reid B. L., 1980. Utilization of various fruit pomace products by growing rabbits. *Nutrition Reports International* **21**:55-62.
- SEROUX M., 1982. Effet de la cuisson de l'amidon par floconnage des céréales sur les performances zootechniques des lapereaux sevrés. *3e Journées Rech. Cunicole en France* 1:communication 10,1-11.
- SEROUX M., 1984a. The use of monocereal diets for rabbits. *3rd World Rabbit Congress, Rome* 1:331-339.
- SEROUX M., 1984b. The use of protein plants for fattening rabbits, peas, lupin grains, field beans. *3rd World Rabbit Congress, Rome* **1**:376-383.
- SEROUX M., 1988. Spring peas as a source of protein for doe rabbits. 4th World Rabbit Congress, Budapest 3:141-147.
- SEROUX M., 1989a. Wheat for fattening rabbits. Effects of flaking and addition of brewers' yeast. *Cuniculture (Paris)* **16**:22.
- SEROUX M., 1989b. Barley for fattening rabbits. Effects of flaking. *Cuniculture (Paris)* **16**:99.
- SEROUX M., FRANCK Y., MERCIER P., 1980. Utilisation du maïs deshydraté par le lapin à l'engraissement. 2nd World Rabbit Congress, Barcelona 2:157-166.

- SESE B. T., BEREPUBO N. A., 1996. Growth response and organ weights of young rabbits fed graded levels of dietary raw soybean in the hot humid tropics. *World Rabbit Science* **4**:15-18.
- SESE B. T., ORUWARI B. M., BEREPUBO N. A., 1999. The value of cowpea testa in the diet of growing rabbits. *International Journal of Animal Sciences* **14**:209-214.
- SFAIROPOULOS A., SPAES A. B., FLOROU-PANERE P., MIHAS B., KOKKONES D., 1987. A study on the use of sodium hydroxide-treated rice straw supplemented with molasses in the diet of fattening rabbits. *Epitheorese Zootehnikes Epistemes*:107-122.
- SHQUEIR A. A., CHEEKE P. R., PATTON N. M., 1985. Effect of feeding cabbage residue on performance and diarrhea in rabbits. *Journal of Applied Rabbit Research* 8:177-180.
- SINATRA M. C., FASONE V., BARRESI S., D'URSO G., 1987. Effect of using wheat, barley and triticale in monocereal diets for rabbits. *Tecnica Agricola* **39**:243-248.
- SINGH B., MAKKAR H. P. S., KRISHNA L., 1990. Urea utilization by rabbits fed low protein diets. 1. Nutrient utilization. *Journal of Applied Rabbit Research* **13**:80-82.
- SINGH B., NEGI S. S., 1987. Evaluation of peanut, mustard, linseed and cottonseed meals for wool production in Angora rabbits. *Journal of Applied Rabbit Research* **10**:30-34.
- SINGH P., CHAUDHARY L. C., VERMA A. K., PATHAK N. N., 1997a. Nutritive value of Robinia (*Robinia pseudoacacia*) leaves in growing Soviet Chinchilla rabbits. *World Rabbit Science* **5**:135-137.
- SINGH P., PATHAK N. N., BISWAS J. C., 1997b. Performance of broiler rabbit (Soviet Chinchilla x Grey Giant) fed low grain concentrate. *World Rabbit Science* **5**:121-123.
- SKRIVANOVA V., COPIKOVA J., SINICA A., MAROUNEK M., 1996. Effect of a rabbit diet with sugar-beet pulp on gains, digestibility of nutrients and quality of rabbit meat. *Scientia Agriculturae Bohemica* **27**:221-227.
- SOLIMAN M. A., 1994. A study of some factors affecting rabbits meat quality. *Egyptian Journal of Rabbit Science* **4**:113-122.
- SREEMANNARAYANA O., RAJU K. V. S. N., PRASAD J. R., 2001. Utilisation of *Schleichera oleosa* leaf meal as rabbit feed. *Indian Journal of Animal Nutrition* **18**:93-95.
- SREEMANNARAYANA O., RAJU K. V. S., RAMARAJU G. V. A. N. S., PRASAD J. R., 1995. The use of *Ulva fasciata*, a marine alga as rabbit feed: growth and conversion efficiency. *Indian Veterinary Journal* **72**:989-991.
- SREEMANNARAYANA O., RAMACHANDRAIAH K., SUDARSHAN KUMAR K. M., RAMANAIAH N. V., RAMAPRASAD J., 1993. Utilization of azolla as rabbit feed. *Indian Veterinary Journal* **70**:285-286.
- STRUKLEC M., KERMAUNER A., MARINSEK LOGAR R., 1995. Effect of feeding with a diet based on maize, barley and oats on the digestive process and growth performance in growing rabbits. *Sodobno Kmetijstvo* **28**:505-508.
- SZYSZKA M., POSRI S., MEULEN U. TER., 1985. Estimation of acceptable daily intake of mimosine for rabbits. *Zeitschrift fur Tierphysiologie, Tierernahrung und Futtermittelkunde* **54**:156-160.
- TAG-EL-DIN T. H., ALI M. A., ISMAIL F. S. A., ALI R. A. M., 1999. Utilization of corn stalk in feeding rabbits. *Egyptian Journal of Rabbit Science* **9**:25-42.
- TANGENDJAJA B., RAHARDJO Y. C., LOWRY J. B., 1990. *Leucaena* leaf meal in the diet of growing rabbits: evaluation and effect of a low-mimosine treatment. *Animal Feed Science and Technology* **29**:63-72.

- TAWFEEK M. I., EL-GAAFARY M. N., ABD-EL-RAHIM M. I., AHMED S. S., 1994. Influence of dietary citric acid and acidulated palm oil soapstock supplementation on growth response, nutrient utilization, blood metabolites, carcass traits and reproductive efficiency of NZW rabbits. *Cahiers Options Mediterraneennes* 8:197-211.
- THROCKMORTON J. C., CHEEKE P. R., PATTON N. M., 1980. Tower rapeseed meal as a protein source for weanling rabbits. *Canadian Journal of Animal Science* **60**:1027-1028.
- THROCKMORTON J. C., CHEEKE P. R., PATTON N. M., ARSCOTT G. H., JOLLIFF G. D., 1981. Evaluation of meadowfoam (*Limnanthes alba*) meal as a feedstuff for broiler chicks and weanling rabbits. *Canadian Journal of Animal Science* **61**:735-742.
- TOR-AGBIDYE J., LUICK B., CHEEKE P. R., PATTON N. M., CRAIG A. M., 1992. Performance of weanling rabbits fed endophyte-infected tall fescue seed containing ergot alkaloids. *Journal of Applied Rabbit Research* **15**:1314-1320.
- TOR-AGBIDYE Y., ROBINSON K. L., CHEEKE P. R., KAROW R. S., PATTON N. M., 1990. Nutritional evaluation of buckwheat (*Fagopyrum esculentum*) in diets of weanling rabbits. *Journal of Applied Rabbit Research* **13**:210-214.
- TORTUERO F., RIOPEREZ J., RODRIGUEZ M. L., 1989. Nutritional value for rabbits of olive pulp and the effects on their visceral organs. *Animal Feed Science and Technology* **25**:79-87.
- TOSON M. A., EL-LATIF S. A. A., IBRAHIM M. R. M., 1999. Growth performance of NZW rabbits fed diets containing cassava leaves and stems meal as a substitution of clover hay meal. *Egyptian Journal of Nutrition and Feeds* **2**:541-549.
- TROCINO A., XICCATO G., QUEAQUE P. I., SARTORI A., 1999. Effect of feeding plans based on dried beet pulp on performance and meat quality of growing rabbits. Recent progress in animal production science. 1. Proceedings of the A.S.P.A. XIII Congress, Piacenza, Italy, 21-24 June, 1999. :713-715.
- UKO O. J., ATAJA A. M., TANKO H. B., 1999. Response of rabbits to cereal by-products as energy sources in diets. *Archivos de Zootecnia* **48**:285-294.
- VASANTHAKUMAR P., SHARMA K., SASTRY V. R. B., KUMAR S., 1999. Effect of graded dietary levels of neem (*Azadirachta indica*) seed kernel cake on carcass characteristics of broiler rabbits. *Asian-Australasian Journal of Animal Sciences* **12**:1246-1250.
- VERITA P., ORLANDI M., 1977. Hydrolysates of leather in the feeding of rabbits. *Coniglicoltura* **14**:47-51.
- WITTOUCK P., DETIMMERMAN F., PETRY M., HOVE C. VAN, 1992. Azolla as a food for rabbits in Africa. *Journal of Applied Rabbit Research* **15**:1058-1062.
- Wojsyk-Kuzniewicz A., 1981. Inclusion of steamed potatoes in complete pelleted feeds for fattening rabbits and their effect on carcass quality. *Zeszyty Naukowe Akademii Rolniczei we Wrocławiu*:255-269.
- YALCIN S., TUNCER I., ONBASILAR E. E., 2003. The use of different levels of common vetch seed (*Vicia sativa* L.) in diets for fattening rabbits. *Livestock Production Science* **84**:93-97.
- ZAMORA LOZANO M., MATA MORENO C., MARTINEZ TERUEL A., GOMEZ CASTRO A. G., PEINDAO LUCENA E., MEDINA BLANCO M., 1984. The use of *Cistus ladanifer* L. in rabbit feeds. *Archivos de Zootecnia* **33**:295-300.
- ZEWEIL H. S., NOUR A. H., ABD EL-RAHMAN S. A., 1993. Use of water hyacinth (*Eichhornia crassipes* mart sloms) in rabbit feeding. *Egyptian Journal of Rabbit Science* **3**:191-198.

ZHOU W., LU F., WANG T., HU W., 2002. Effects of different urea levels in diet on rabbit growth and biochemical indices of blood. *Jiangsu Journal of Agricultural Sciences* **18**:110.