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Abstract

This paper reviews the application of recently developed
*animals models" for usage in rabbit breeding experimentation, in
genetic evaluation programs and in timely adoption by industry.
Animal models (AM) are relevant to single-trait breeding value
estimation of meat and wool traits and include: 1) a full AM; 2) a
full AM with repeated records; 3) a full AM for a maternally
influenced trait with permanent environmental effects associated
with the dam or litter, and 4) a reduced animal model (RAM) with
maternal genetic and permanent environmental effects. These AM
types are illustrated with numerical examples. The multiple-trait
mixed model procedure will be briefly mentioned as another AM type
relevant to rabbit breeding. Computer resource requirements
necessary to implement AM analyses are discussed, as well. Breeding
companies and seed stock suppliers adopting mixed model techniques
using an AM will benefit directly through more efficient selection
for rabbit meat or wool production. Ultimately, commercial and
subsistence rabbit farmers throughout the world and consumers of
rabbit products will benefit from this enhanced genetic merit.

Introduction

Domestic rabbit biology . and .management give rise to
considerations that dictate how experiments should best be designed
to yield valid and interpretable quantitative genetic results., To
illustrate this contention: 1) rabbits are a litter bearing species
(polytocous) and competition effects amongst siblings can be
appreciable; 2) because of the short litter interval, confounding
problems between individual doe, age of doe (parity) and time
(season or month) effects are common in statistical analyses; 3)
confounding between random sire, dam, litter and(or) progeny
effects is often encountered; 4) maternal factors (e.g. uterine,
nest quality, behavior and lactation) are generally pronounced,
even for carcass traits because fryers are slaughtered at a
relatively young age; 5) paternal half-sib estimates of
heritability for growth and carcass traits typically are.low to
moderate, at best, even 1if standardization (fostering) or
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statistical adjustment for litter size is made, and 6) sex effects
are generally not important for traits measured during the pre-
pubertal period. The basic challenge before rabbit geneticists is
to appropriately account for these biological patterns to most
accurately estimate genetic and environmental parameters for use in
rabbit breeding programs. ‘

In this paper, the animal model will be emphasized. This
procedure has become popular in recent years for the primary
purpose of genetic evaluation of animals. Adoption of Henderson'’s
mixed model equations (MME) and procedures to derive best linear
unbiased prediction (BLUP) of breeding value (BV) has resulted in
technological breakthroughs in beef (Quaas and Pollak, 1980;
Benyshek et al., 1988) and dairy cattle (Misztal et al., 1992) and
swine (Hudson and Kennedy, 1985) genetic evaluation programs in the
U.S., Canada and other industrialized nations. This breakthrough
has been dependent upon enhanced computer capabilities (e.g.
supercomputers). The animal model innovation has replaced many
earlier genetic evaluation procedures. Utilizing BLUP procedures,
the prospect exists for developing national, even international,
rabbit genetic evaluation programs.

The objective of this paper is to describe relevant
statistical designs and animal models, the application of which
will enhance accuracy of breeding value prediction to accelerate
genetic progress for the improvement of meat and wool production in
rabbit breeding programs.

Mixed Model Methodologies

Breeding Value Prediction. Accurate determination of BV for a
production trait in meat or wool rabbits is paramount to breeding
program success. Genetic progress rests on the correlation between
BV and phenotypic value, ergo heritability (h?). Hence, accurate BV
estimation is of utmost priority in progressive breeding programs.
Conventionally, the formula: BV = h? (P, - p) has been used to
predict BV based on animals with single recoxrds that belong to a
contemporary group (where P; - i is the deviation of the phenotypic
record of the i** animal from the population or contemporary group
mean). The method of choice is to estimate breeding value of
animals by BLUP (Henderson, 1973, 1977a, 1988). A BLUP procedure
can be used to predict BV and adjust for model fixed effects (e.q.
age group, season and sex) simultaneously.

Accuracy of BV estimation can be further enhanced by
incorporation of the inverse of Wright’s additive numerator
relationship matrix (A™) into a mixed model analysis, as previously
demonstrated by Henderson 51973) . In addition, inverse matrices
accounting for dominance (D) and epistatic (I') relationships can
be constructed based on the A™! matrix to estimate non-additive
genetic effects, as well as dominance and epistatic variances
(Henderson, 1977b; Kennedy and Sorenson, 1988; Lin and Lee, 1989;
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Hoeschele, 1991). These relationship matrices efficiently utilize
available pedigree information in BV (genetic effect) solutions,
and as well accounts for genetic trend. A relationship matrix could
contain animals with records, sires and dams with progeny records
that contribute to genetic relationships, and also common ancestors
that have no records (base animals). Estimation of BV could be
obtained not only for sires, dams and base animals (Henderson,
1977a), but also for young animals without progeny records
("interim expected progeny differences") on the basis of their
genetic relationships (Wilson and Willham, 1988).

Accounting for inbreeding effects by regression in animal
models minimizes the likelihood of confounding between selection
and inbreeding effects in populations undergoing selection (Quaas
and Pollak, 1980; Kennedy et al., 1988). Inbreeding coefficients
for each animal can be calculated from available pedigree
information using the method by Quaas (1976). In addition, under a
multiple-trait mixed model (i.e. multivariate model) the effects of
sequential culling in traits and(or) selection bias can be
corrected (Henderson, 1975).

Numerical Example. To illustrate usage of a relatively simple
animal model type (sire evaluation under a sire model for a single
trait - average daily gain [ADG]), an example is provided by the
usual matrix notation for a general mixed linear model, written as:

y=Xp + Zs + € [11]

where y is an observational vector, B is a vector of an unknown
fixed effect (mu), X and Z are known matrices relating records to
mu and sire effects, s is a vector of unknown random sire effects
(direct additive genetic transmitting ability. [breeding value]) ~
(0, Ac?,, where A is the numerator relationship matrix among sires),
and e is a vector of unknown random effects ~ (0, Ro?, where R is
assumed to be an identity matrix). Solutions to obtain best linear
unbiased estimates (BLUE) of fixed effects and BLUP of random
effects using MME: :
A
| 2y | |

lf XX X'% ]t ]I
| 2'x 2’z + A'a | s | [2]
where a represents the ratio of known variances (o¢2%/6¢%), which is
equivalent to (4-h?)/h?. (For this problem assume that h? = .25 and
@ = 15). For simplicity, BV for ADG will be estimated for three
non-inbred sires, each with 3 progeny records (k). (Maternal
effects are ignored.) Grand and sire means equal 40.0, 41.2, 42.6
and 36.2 g, respectively. Further, sire 1 and 2 are full-sibs, sire
1 and 3 are half-sibs and sire 2 and 3 are half-sibs.
(Relationships of mates and base animals being ignored.) The
additive genetic relationship matrix (A), its inverse (A™) and «A™
are shown:

106



-Proceedings 5th World Rabbit Congress, 25-30 July 1992, Corvallis — USA, 104-130

A [ 1.00 .50 .25 1 Al =] 1.3636 -.6364 -.1818 |
| .s0 1.00 .25 | | -.6364 1.3636 -.1818
[ .25 .25 1.00]| | -.1818 -.1818 1.0909 |
ad™! = [ 20.4545 ~9.5454 -2.7272 | |

[
| -9.5454 20.4545 ~-2.7272 |
| —2.7272 -2.7272 16.3636 | (3]

The mixed model equations [2] can now be set up and solved:

o 3 , 3 3 “11360.00 [ p 1

I3 3 + 20.4545 0 + -9.5454 O + -2.7272! | 123.6| ) ! Ql!

|3 0+ -9.5454¢ 3 + 20.4545 0 + -2.7272| |127.8] | s, |

{3 0 + =2.7272 O + -2.7272 3 + 16.3636 {108.61 } §3} [4]
The solution vector yields BLUE of p = 39.95 g, and BLUP of BV for
sire 1 = .26 g, sire 2 = .39 g, and gire 3 = ~,49 g. Instead, if

sires were unrelated the BV’s would sum to zero, whereas this
property does not exist when sire relationshlps are prevalent, as
will be observed in some later problems in this paper. A general
formula is provided for calculating BLUP of BV (or expected progeny
difference [EPD]) when sires are related, as follows:

§1= 1 )(\QYi."zuﬁ)' (

134
- T a-s;a )
Z,;, + a o

Z + Z, + ala ) (3'1 [5]
where Ly, represents the sum of k progeny records (Z,,y) on the i*
sire, and a!* and a' denote the inverse additive genetic
relationships of the individual sire and of the sire to its
relatives, respectively. Instead, if sires had been assumed to be
unrelated then the simple BLUP solution of EPD for sires:

k
e

A

8; <= )(-Y-i.‘ﬁ)

(6]

If progeny were grouped by age, sex and sire breed, for example,
then mu with the appropriate generalized least squares class means
would be inclusive in Equation 6.

Restricted Maximum Likelihood (REML) Algorithms. Solutions to
the above equations assume a priori knowledge of variance component
values. If the observational components of variance are not known,
estimation by REML (Patterson and Thompson, 1971) has become a
popular method used by animal breeders. According to Henderson
- (1988), "a remarkable property of REML is that, under certain

restrictions, it estimates free of bias due to selection the
parameters needed in mixed-model evaluation of animals in a
population undergoing selection." Derived by iterative procedures,
REMI,. variance component estimates can, in turn, be applied to
derive BLUE of the fixed (contemporary group) effects employing MME
(Henderson, 1873; Weigel et al., 1991). REML also takes into
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account the degrees of freedom involved in estimation of fixed
effects, including p (Searle, 1987).

Other popular REML algorithms include derivative-free, or
DFREML. (Graser et al., 1987; Meyer, 1988), and expectation
maximization, or EMREML (Dempster et al., 1977). The DFREML method
has the advantage that only a l-dimemsional search for variance
components is required, without inversion of the mixed model
coefficient matrix, thereby reducing computational time and costs.
Also, computational efficiency of DFREML allows for a larger number
of equations than derivative REML so that additional random effects
(e.g. dam and litter effects) can be incorporated with numerator
relationships (Meyer, 1991). The EMREML method has the appealing
property that convergence is guaranteed if positive wvariance
estimates are used, even in cases where other iterative techniques
have problems with negative or zero estimates (Henderson, 1984).

Computer Software for Animal Models. To date, there is limited
availabilty of personal computer (PC) packages that utilize
Henderson’s MME that yield BLUE and BLUP solutions for fixed and
random effects under an animal model. To date, two popular PC
packages incorporate the numerator additive genetic relationship
matrix (A™) into the MME (Meyer, 1988; Harvey, 1990). These
programs can consider both non-inbred and inbred animals. If
Meyer'’s DFREML package is supplemented with a fortran compiler and
a sparse matrix program {George et al., 1980), computational memory
and time requirements can be reduced substantially for the DF-type
algorithm, as discussed by Boldman and Van Vleck (1991). A rich
variety of animal models can be investigated using the DFREML
package. Harvey’s LSMLMW and MIXMDL program (PC-2 version) includes
two model types for BLUP estimation under an animal model. A
maximum of only 150 animals (sires) can be evaluated in the same
analysis, and only one random effect (usually direct genetic
effects) can be accommodated in either model (i.e. maternal genetic
or permanent environmental effects cannot be considered).

Another package includes the General Linear Mixed Models
(GLMM) program developed by Blouin and Saxton (1990) which utilizes
Henderson’s MME to solve for BLUE and BLUP for fixed and random
model effects. However, to date, the program does not incorporate
the A matrix, although the next version should (D. C. Blouin,
personal communication). The General Linear Model (GLM) routine of
SAS (1985) does not presently utilize mixed model techniques,
although the forthcoming version (6.07) will have this capability
(via PROC MIXED) to yield BLUE and BLUP estimates, although random
effects (e.g. animals, sires or dams) are assumed to be
uncorrelated (G. Hassan, personal communication).

Mixed models of particular relevance to prediction of breeding
value in rabbit populations include full and reduced animal models
(AM and RAM) for animal, animal with repeated records, and
maternally-influenced trait data. Examples of these models will be
provided in this paper. Due to page space limitations, only in the
conclusions section will mention be made of multiple-trait models.
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Full Animal Model. A full animal model (AM) considers all the
additive genetic variation (¢?,) among animals Dbased on
relationships. A single-trait analysis for annual wool yield will
be conducted under a full AM. Prediction of additive genetic value
will be estimated for eleven animals produced in two year-season of
birth groups and representing both sexes. (Maternal and(or)
permanent environmental effects and non-additive genetic effects
are assumed to be absent in this analysis.) Wool yield will be
analyzed using software by Harvey (1990). The data set is given:

wool
yield deviation
animal gire dam ys sex (g) from mean (g)*
2 O** 1 1 M 1146 -6
3 O#** O*% 1 M 1080 =72
12*** 2 1 2 F 1230 78
13 4 6 2 F 1022 -130
14 4 8 2 F 1196 44
15 4 9 2 F 1040 =112
16 4 10 2 F 1132 -20
17 7 11 2 M 1220 68
18 7 8 2 M 1090 -62
19 7 11 2 F 1216 64
20 7 5 2 M 1300 148

_Simple mean for annual wool production is 1152 g.
**A "0" identification code represents an unknown parent.
***Inbreeding coefficient for animal 12 equals .25.

The following mixed model is assumed:
y=Xp + 2Zd + Wx + e [71

where y is an observational vector of animal records (expressed as
deviations from the simple mean), B is a vector of unknown fixed mu
and year-season (ys) group effects, d is a vector of random direct
genetic effects ~ (0, Ac“,, where A is the numerator relationship
matrix among animals), x is a vector of unknown fixed sex group
effects, and e is a vector of unknown random environmental effects
~ (0, Ro?, where R is assumed to be an identity matrix). The X, Z
and W are incidence matrices of zeros and ones relating records to
the appropriate ys, d and x groups, respectively. The mixed model
equations are shown using matrix notation:

IIx'x W X'%Z 11-1 IIX'yll I[ B
{w’x WW WEZ i }W’y{ = { ys
lz’X 2z'W 2% + Al lz'y | | x
| & (81

The general X matrix is first computed. Columns and rows 1, 2
and 3 pertain to mu, the first year-season class and the first sex
class, respectively, after imposing usual zero-sums restrictions to
improve computational efficiency. (Negative one values being
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assigned to second ys and sex classes.) Remaining columns and rows
represent all 11 animals corresponding to coded year-season and sex
classes. The general X (coefficient matrix), and y and general X'y
(containing subvectors X'y, Wy and Z’y) matrices are shown:

X=[1 1-110000000000 y-= -6 X'y = 0
1 1-101000000000 =72 -156
1-1 100100000000 78 -152
1-1 100010000000 -130 -6
1-1 100001000000 44 =72
1-1 100000100000 -112 78
1-1 100000010000 -20 -~130
1-1-100000001000 68 44
1-1-100000000100 ~62 ~112
1-1 100000000010 64 -20
1-1-1000000000 0 1 148 68

-62
64
| 148] (9]

The complete A™ numerator relationship matrix (20 x 20
dimension) is computed in Harvey’s program for 9 base animals
without records that contribute relationships to the 11 animals
with records. Inbreeding is accounted for using the procedure of
Quaas (1976). To reduce the number of equations, Henderson (1976)
demonstrated how to eliminate the A™ elements for base animals:

AL, = B, - [B’n B, ]('Bu ) [10]

where A™l,, is the A™? for animals with records only. The B,, contains
the A elements for these animals prior to elimination of the A™
elements of the base animals (via absorption into the equations for
animals with records). The B?,; is the inverse of A™ block
involving base animals and B,, contains the A™? elements involving
base animals and animals with records (Harvey, 1990). These
matrices are symbolized by:

L
l

|
W D ¥ By Byl [11]
The solution for A™,, representing the 11 animals with records:

[ 1.6969 .0000 -.7272 .0000 .0000 .,0000 .0000 .00OC .0000 .00QO .0000]
~.0000 1.0000 .0Q000C .0000 .000C .0000 .0000 .0000 .000Q .0000 .OOOQO
-.7272 .0000 1.4545 .0000 ,0000 .0000 .0000 .0000 ,0000 .0O000 .0000
.0000 .0000 .0000 1.1456 -.2072 -.1877 -.1877 -.0080 .0584 -.0080 -.0106
.0000 .0000 .0000 -.2072 1.2430 ~.2072 -.2072 .0478 -.3506 .0478 .0637
.0000 .0000 .0000 -.1877 -.2072 1.1456 -.1877 ~.0080 .0584 -.0080 -.0106
.0000 .0000 ,0000 -.1877 -.2072 -.1877 1.1456 -.0080 .0584 -.0080 -.0106
.0000 .0000 .0000 -.0080 .0478 -.0080 -~.0080 1.3865 -.1673 ~.6135 ~.1514
.0000 .0000 .,.0000 .0584 -,3506 .0584 .0584 -.1673 1.2271 -.1673 -.2231
.0000 .0000 .0000 -.0080 .0478 -.0080 -.0080 -.6135 -,1673 1.3865 -.1514
| .oo00 .o000 .0000 -.0106 .0673 -.0106 +.0106 —.1514 -.2231 -.1514 1.1315
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Heritability of .40 for wool yield is arbitrarily assumed.
Multiplication of the above A%, matrix by the scalar, a (a = o%/0%,
= (1 - h®)/ h? = 1.5), yields products that are added to the Z x 2
(2’ 2) block of coefficients for animals. The completed coefficent
matrix required to obtain solutions to obtain BLUE of fixed effects
and BLUP of random effects is given [Equation 13]:

1

-7 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
11 -5 1.000 1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000
=5 11 ~1.000 ~1.000 1.000 1.000 1.000 1.000 1.000 -1.000 -1.000 1.000

1 -1 3.545 .000 -1.091 .000 .000 .000 .000 .000 .000 .000

1-1 .000 2.500 .000 .000 .000 .000 .000 .000 .000 .000
-1 1 -1.091 .000 3.182 .000 .000 .000 .000 .000 .000 .000
-1 1 .000 000 000 2.718 =-.311 -.282 -.282 ~.012 .088 ~.012
-1 1 .000 .000 .000 -.311 2.865 -.311 -.311 .072 -.526 .072
-1 1 .000 .000 .000 -.282 -.311 2.718 -.282 ~,012 .088 -.012
-1 1 .000 .000 .000 ~.282 -.311 -.282 2.718 -.012 .088 -~.012
~1 -1 . 000 . 000 .000 -.012 .072 ~.012 ~.012 3.080 -.251 -.920
-1 -1 . 000 .000 .000 - .088 «.526 .088 .088 ~.251 2.841 -.251
-1 1 .000 .000 .000 -.012 .072 -.012 -.012 -.920 -.251 3.080
-1 -1 .000 .000 .000 -.016 .096 ~.016 ~.016 =~.227 -.335 -.227

I I S S Ry B I e R R T

Inversion of the latter matrix and multiplication to the general
X'y vector (from Equation 9), yields the solutions: BLUE for mu =
1128.43, ys (class 1) = -41.73, ys (class 2) = 41.73, sex class 1
= ~21.62, sex class 2 = 21.62; and BLUP of direct BV for animal 2
= 20.69, animal 3 = -11.33, animal 12 = 32.70, animal 13 = -51.98,
animal 14 = -2.63, animal 15 = -45.98, animal 16 = -15.32, animal
17 = 18.18, animal 18 = -23.97, animal 19 = 27.99 and animal 20 =
40.46 g, respectively. Equation 14 below is the BV prediction
formula from this analysis (%,,= 1, since each animal has a record):

31=( 1 (Yo -p-ys,-%) - [__1 )(za"Aa)
el I : T ata | |

where d is estimated direct BV for wool yvield of the i* animal
based to its own record and the contribution of its relatives, and

adjusted for fixed effects (mu and appropriate ys and x class
means) . '

Animal Model with Repeated Records. The last trait problem
will again be wused with the additional consideration of
repeatability for the case when more than one record is available
on animals. Angora rabbits have repeated records based on, for
example, annual or seasonal shearing-related traits. Maternal
genetic effects as would be associated with the same dam, and(or)
environmental effects as would be associated with the same litter,
are presumed to be absent in this model. Further, for simplicity
here, sex differences will be ignored as well as additive genetic
relationships among animals. The mixed model as shown previously
from Equation 7 is rewritten as follows:

Yy =Xys + 4,d + Z,pe + e ' ) [15]

111

1.000!
-1.000}
-1.000]

000!
. 000}
.000|
~.016]
.096l
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The model terms are as defined previously, except that ys is a
vector of unknown fixed effects due to year-season (2 classes) as
contemporary groups, and pe is an unknown vector of random
permanent environmental effects (if non-additive genetic effects
are absent) ~ (0, Io?,, where I is an identity matrix). Random
effects, d , pe and e, are further assumed to be uncorrelated. The
MME for this problem:

l[x'x X'z, X' Z, Il-l l[x'yll I[ ys lI
} %X %'.,% + A, % ,%, } % Z’,y} = } d }
|2 x 2.2, LB L8, + Ta, | | 2y | pe | [16]

The data set involves 5 animals with records as listed below:

wool breeding producing
record yield value A ability
animal ys no. {(g)* solution (d) solution (p)**
1 1 1 1228 -7.1111 -10.6667
1 i 2 1272
2 1 1 1282 7.1111 10.6667
3 2 1 1194 -3.3676 -5.0515
3 2 2 1240 '
4 2 1 1252 . 37.2353 55.8529
4 2 2 1286
4 2 3 1338
5 2 1 i124 -33.8676 ~50.8015
5 2 2 iisg

"Simple mean for wool production is 1240.4 g.
**Estimated producing ability (EPA) equals the sum of BLUP for
additive genetic merit (BV) and permanent environmental effects.

The above data set was analyzed using GLMM software (Blouin
and Saxton, 1990), although DFREML or SAS (6.07 version) could be
used for this problem. Since animal relationships were ignored, the
A matrix turns out to be an identity matrix, I. In GLMM, a no
intercept (mu) model may be chosen as used in this example. The
completed mixed model coefficient matrix, and the general X'y
(containing X'y, 2’,y and Z’.,y) and the solution (ys, d and pe)
vectors computed to solve the MME are given [Equation 17]:

302 1 ©6 o0 ©0 2 1 ©0 o o0 ]t [3782 [ 1264.22
c70 o0 2 3 2 ©0 o0 2 3 2 8622 1223.74
2024, 0 0 O © 2 0 0O 0 O 2500 -7.11
100 14,0 © © ©0 1 0 O © 1282 7.11
020 0 24¢, 0 ©0 O ©O 2 0 0 2434 -3.37
030 0 O©0 3+, 0 O 0 O 3 0 3876] = 37.24
020 ©0 ©0O ©O 2+¢,0 O O O 2 2312 -33.87
202 ©0 0 0 O 2+¢; 0 O O O 2500 -3.56
100 1 ©0 ©0 O O 1+a3 0 0 O 1282 3.56
020 0 2 0 O O O 246, 0 O 2434 -1.68
030 0 ©0 3 0 O O O 3t 0 3876 18.62
020 ©O0 O © 2 O O © 0 = 2+a, 2312 -16.93
The «, and «, values relate to heritability (h?) and
repeatabilty (r) estimates, where «, = ¢°,/6?, = (1-r)/h? and «, =
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0%/6%, = (l-r)/(r-h?), respectively. Using arbitrary values of
heritability of .4 and repeatabilty of .6, a; and a, values of 1 ?.nd
2 are calculated. Of relevance, if these parameters change with
age, as reported by Garcia and Magofke (1982) and Jaitner et al.
(1988), then a multivariate analysis under an animal model approach
might be preferable whereby each available record is regarded as a
different trait. Two excellent review papers on genetics and(or)
breeding programs for Angora wool production are by Yadav and
Dempfle (1988) and Rochambeau and Thebault (1990).

BLUE for ys first and second classes are 1264.22 and 1223.74
g. BLUP solutions for direct BV and estimated producing ability
(EPA) for wool yield, adjusted for ys effects, are shown above with
the data. EPA is a function of an animal’s additive genetic merit
plus a permanent environmental and(or) non-additive genetic value.
Animal relationships were ignored, so BLUP solutions for BV and EPA
sum to zero within each ys class, as expected. Basic formulas for
direct BV (d) and EPA (p) prediction from this analysis are given:

”~ nihz ( — -~ ) A nir ( — ~ )
4, = Yy, - ¥y8 and Py = Yy, - ¥8
t 1+(n1-1)r) ! 3 * i+(n;-1)r 3 118)

These formulas are also the selection index for the i™ animal with
n records for estimating additive genetic merit and producing
ability, adjusted for BLUE of the j* ys effect (Van Vleck, 1988).

The animal with repeated records model could also be used for
genetic evaluation of does for reproductive performance (litter
size or weight at weaning). The MME would be set-up based on h? and
r parameter estimates (either known or derived iteratively prior to
computing BV and EPA solutions), additive genetic relationships and
number of records per doe. Recent papers (Estany et al., 1988a;
Baselga et al., 1992; Blasco et al., 1992 Ferraz et al., 1992a;
Rochambeau et al., 1992), all published in World Rabbit Congress
proceedings, describing similar models have discussed BLUP
applications for doe evaluation and(or) selection/culling purposes.

Animal Model for a Maternally Influenced Trait. Of relevance
to meat rabbit breeding, this AM type considers a growth trait that
is influenced by direct genetic effects, maternal genetic effects
(chiefly milk production), and also permanent environmental
differences common to contemporary littermates (presumably due to
maternal environmental, competition and(or) pen effects) at the
time of measurement. In addition, direct and maternal genetic
effects may be correlated; in other words, a genetic covariance may
exist. Failure to take into account such factors can lead to
serious bias in BV estimation, thus realized genetic progress could
prove disappointing. Van Vleck (1990a) outlined procedures for BV
prediction under an AM with maternal effects which accounted for a
covariance between direct and maternal additive genetic effects, as
well as permanent environmental effects.
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To illustrate, a 70-day body weight analysis under this AM
type will be performed using observational components of
(co)variance reported by Lukefahr et al. (1992b) as obtained from
the DFREML method (Meyer, 1988). The simulated data set is shown:

idirect maternal permanent
breeding breeding environmental

animal sire dam ys sex lsw bw, g* ‘value value deviation

1 O** O*=* - M - - 11.3053 -15.9504 -

2 1 O** - F - - 6.4750 .3583 -

3 1 2 1 M & 2139 §0.8289 ~91.6427 .3300

4 O*+ 2 1 F 8 1781 =14.5425 15.7706 -

5 1 4 2 F 5 2256 41.4494 -86.1944 2358

] 1 4 2 F 5 1936 -25.8624 48.3798 .2358

7 3 4 2 ® 7 1977 18.3426 -38.3348 -.38569

8 3 4 2 M 7 1843 -6.9868 12.3055 ~.3569

9 3 2 2 F 6 2192 61.2806 ~110.8760 .7474

10 3 2 2 M 6 2123 48.2378 -84.7996 +7474

11 1 2 2 M 4 1885 -+41.1159 92.1794 -.6263

Simple mean for 70-day body weight (bw) is 2011.33 g.
A "0" identification code represents an unknown parent.
cOdes' y8 = year-season class; lsw = litter size weaned (mean lsw = 6 kits).

For this example, an additive genetic model will be assumed
since non-additive genetic (heterosis) effects on body weight may
possibly be of minor importance (Carregal, 1980; Baselga et al.,
1982; Lukefahr et al., 1983a,b; Brun and Ouhayoun, 1989; Krogmeier
and Dzapo, 1991). Body'welght records from the above table will be
adjusted for litter size, as conducted in other genetic variance
component analysis rabbit studies (Mc¢Reynolds, 1974; Lukefahr et
al., 1988, 1992a,b; Moura et al., 1991; Ferraz et al., 1992a). An
adjustment for inbreeding effects by regression will not be made in
this example. Ferraz et al. (1992b) included inbreeding effects as
covariates using an animal model for analysis of production traits
in rabbits. Further, permanent matermal environmental effects on
body weight will be assumed to be absent between siblings from non-
contemporary litters. The sex effect will also be ignored in this
example, because sex differences for body weight are generally not
important in young rabbits. The mixed model is rewritten from
Equation 15, as follows:

= Xp + %Z,d + Zm + Z,pe + ¢ [19]

where y is an observational vector, B is a vector of unknown fixed
effects due to year-season of birth as contemporary groups (and
includes the linear covariate of lsw with records deviated from the
lsw mean of 6 kits), X, Z%;, %, and Z, are known incidence matrices
relating records to the appropriate fixed and random effect
classes, d is an unknown vector of random direct genetic effects ~
(0, Ac?, and Ag,,, where A is the numerator relationship matrix among
animals), m is an unknown vector of random maternal genetic effects
~ (0, Ac?, and Ag,,, where A is the same numerator relationship
matrix), “and pe is an unknown vector of random permanent
environmental effects *~ (0, Io?,, where I is an identity matrix).
Random effects, d and m are correlated, whereas the random pe
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effect is assumed to be uncorrelated with d, m and e effects. The
MME for this analysis (Equation 20):

X¥x X% X' %, X' %4 l -1 { X'y ]I [ ] I
} Z X B ,% + Alay %%, + Alay, 2745, } { z’ ly{ ) { d }
I Symmetric 2 ,%, + Alay, %42 % I z’ g‘ ’ m ‘
[ 2,3 + Ta;3 ] 12,y | pel

The X'X, X’'Z,, X’'Z, and X’ Z, matrices are shown (Equation 21):

XX X' %, X' %, X’ %,

[2 0 2] [oo:.loooooo o0 [02000000000| [1 000 O

lo 7 =2 0000 1-11111 1 Jlo304000000 0| 0o 222 1i

{2212 looo2-1-11100-21 loooocooooo0oo0o0 1{0-220-2
The transpose of the general X'y matrix (subvectors X'y, 2.y,

%',y and Z’.y), referred to as the right-hand sides of the normal
equations, is given (Equation 22):

X'y: 3920 14182 -520 Z',y: 0 O 2139 1781 2256 1936 1977 1843 2192 2123 1855
Z' ;y: 0 10080 08120000000 Z2° 3yt 2139 4192 3820 4315 1855

The 2’,%, animal block matrix (11 x 11) is an identity matrix
of 0’s and 1‘s, where a 1 value is assigned to each diagonal
position since each animal has a record (except for animals 1 and
2). The Z’,Z, animal x dam block matrix (11 x 11) assigns a 1 value
at the animal row by dam column position if the given animal has a
known dam. The Z’,%Z, matrix of 0's and 1’s (11 x 5) assigns a 1
value at the animal row by litter column position if the given
animal is from a known litter. The %Z‘,%Z, dam block matrix (11 x 11)
codes values of 5 and 4 (number of progeny per dam) in the
appropriate diagonal position for dams 2 and 4, respectively, all
other values being zero. The 2Z’.%Z; matrix (11 x 5) codes values of
1 or 2 (number of contemporary littermates) in the appropriate dam
row (2 or 4) by litter column position, other values being zero.
The Z’,Z, litter block matrix (5 x 5) is an identity matrix with a
value for the sibling number per litter assigned to the
corresponding diagonal cell for each of 5 contemporary litters.
Except for %’.Z;, these incidence matrices are shown for clarity:

]

-
"

N
N

2 45, 7’ ,%, z’ 5%, ' 4%,
0000 ...0 00000 0000 ...0 00000 10000
0000 ... . 00000 0500 «au o 10021 02000
0100 .... 10000 0000 ... . 00000 00200
0100 ... . 00000 0004 ... . 02200 00020
0001 .... 01000 00001
0001.... 01000
0001 .... 00100
0001 ... . 00100
0100 ... . 00010
0100 ... . 00010
0100...0 00001 0000 ...0 0...0 (23]
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The A (upper diagonal) and A (lower diagonal) relationship
matrices (accounting for some inbreeding) that pertain to the 11 x
11 animal (2’,Z,), dam (Z’,Z,) and animal x dam (2Z’,%,) blocks of the
coefficient matrix are provided below (Equation 24):

3.3333 .3333 ~-1.0000 1.0000 ~-1.0000 -1.0000 .0000 .0000 .0000 .0000 ~1.0000
3.8095 .1429 -.6667 .Q000 .0000 .0000 .0000 ~1.1429 -1.1429 ~1.0000

1.0000 4.2857 1.1429 .0000 .0000 -1.1429 -1.1429 -1.1429 -1.1429
.5000 1.0000 3.4762 -1.0000 ~1.0000 -1.1429 -1.1429 .0000 .0000
.7500 .7500 1.2500 2.0000 .0000 .0Q00 .0000 .0000 . 0000
.2500 .5000 .3750 1.0000 2.0000 .0000 .0000 .0000 . 0000
.6250 .5000 .5625 .6250 1.1250 2.2857 .0000 .0000 . 0000
.6250 .5000 .5625 .6250 .6250 1.1250 2.2887 .0000 .0000
.5000 .6250 .8125 +.6875 .5938 .5938 1.1875 2.2857 .0000
.5000 .6250 .8128 .6875 .5938 .5938 .7500 1.1875 2.2857

.6250 .8750 1.0000 .4375 .5313 .5313 .7188 .7188 1.3750
.6250 .8750 1.0000 -4375 .5313 .5313 .7188 .7188 .9375 1.3750
.7500 7500 .7500 .3750 .5625 .5625 .5625 .5625 .7500 «7500

The DFREML observational components of (co)variance for pre-
slaughter body weight at approximately 70 days of age, obtained by
iteration, were: o¢?, = 13,428 (h% = .16); o%, = 72,173 (h?%, = .86);
O = =26,855 (T, = -.87); o, = 0, and o?, = 25,177 (Lukefahr et
al., 1992b). The genetic components are derived through additive
genetic relationships. These parameter estimates are biased to some
degree due, in part, to the small sample population size of 219
rabbit fryers from 4 sire breeds, 34 sires, 58 dams and 91 litters
used in the experiment. To solve for the a« values for this example:

[ 02, Canm ] -1 I &q1 &0 } [ 7.329 2.727 ]

I | o% = | I = | I

| o, o% ! | o« @y | | 2.727 1.364 | [25]
The a;, is the ratio of o¢%/c%, = 299.726 (o0?, was arbitrarily

assigned a value that was .1% o? total variance to illustrate this
source of variation in the MME). Following multiplication of the A™
to each of three « scalar matrices (corresponding to «;,, @;; and
®,,) separately, the resulting product matrices are then added to
the corresponding values in the appropriate block of the coeff-
icient matrix. The final form of the four blocks: 2Z‘,%, + A layy,
z’ zzz + A-l Koz z’ IZZ + A-lalz and 2’ 323 + I¢33, are shown below:

%’ 1%, + A 'a,; (upper diagonal) and Z’,%, + Ala,, (lower diagonal) [Symmetric]:

24.430 2.443 ~7.329 7.329 -7.329 -7.329 .000 .000 .000 .000 -7.329
27.920 1.047 -4.886 .000 .000 .000 .000 -8.376 -8.376 =7.329

4.547 32.410 8.376 .000 .000 ~-8.376 -8.376 -8.376 -8.376 .000
.455 10.196 26.477 -7.329 -7.329 -8.376 -8.376 .000 .000 .000
~1.364 .195 5.846 15.658 .000 .000 .000 .000 .000 . 000
1.364 -.909 1.559 8.742 15.658 .000 .000 .000 .000 .000
-1.364 .000 .000 -1.364 2.278 17.752 .000 .000 .000 .000
-1.364 .000 .000 -1.364 .000 2.728 17.752 .000 .000 .000
.000 .000 ~1.558% -~1.55% .000 .000 3.118 17.752 .000 . 000
.000 .000 -1.559 -1.589 .000 .000 .000 3.118 17.752 .000
.000 -1.559 -1.559 . 000 .000 .000 . 000 .000 3.118 15.658

.000 -1.559 ~1.559 .000 .000 .000 . 000 .000 .000 3.118
-1.364 ~-1.364 .000 . 000 .000 .000 .000 .000 .000 .000 2.728

116
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%' %, + A"la,, (Non-symmetric):

9.090 .909 -2.727 2.727 -2.727 -2,727 .000 -000 .000 .000 -2.727
.909 10.389 .390 -1.818 . 000 .000 .000 .000 ~3.117 ~3.117 =-2.727
-2.727 1.390 11.687 3.117 .Q00 .000 -3.117 -3.117 -3.117 -3.117 .000
2.727 =~.818 3.117 9.480 -2.727 -2.727 -3.117 -3.117 .000 .000 .000
-2.727 .000 .000 -1.727 5.454 »000 .000 .000 .000 .000 .000
-2.727 .000 .000 -1.727 .000 5.454 .000 .000 .000 .000 .000
.000 .000 -3.117 -2.117 .000 .000 6.233 . 000 . 000 .000 .000
.000 .000 -3.117 -2.117 .000 .000 .000 6.233 . 000 .000 .000
.000 -2.117 -3.117 .000 .000 .000 .000 .000 6.233 .000 .000
.000 -2.117 -3.117 .00C .000 .000 .000 .000 .000 6.233 .000
-2.727 -1.727 .000 .000 .000C .000 .000 .000 .000 .000 5.454

2' 3%3 + Iay; (Symmetric):

300.726 .000 .000 .000 .00O
301.726 .000 .000 .0OO
301.726 .000 .000
301.726 .000

300.726 [26]

The completed (augmented) mixed model coefficient matrix does
not require inversion when using DFREML. Instead, the Gaussian
elimination method is employed to obtain solutions directly (hence,
derivative-free), whereby the likelihood function is evaluated
explicitly in each round of iteration until the maximum (with
respect to the (co)variance components) is located upon convergence
(Boldman and Van Vleck, 1991). Improved computational efficiency is
realized if a sparse matrix package is supplied (George et al.,
1980) . The procedures and steps are quite involved, however , and as
such it would not be appropriate to review these measures in this
paper. The reader is referred to papers, in particular ¢+ by Meyer
(1988, 1989) for a comprehensive understanding of this program.

The solution set to the mixed model coefficent matrix
(Equation 26) is shown with the tabulated observation ‘data above.
Generalized least squares means (g) for first and second ys classes
and the litter size covariate are 1988.573, 1989.629 and -47.2395,
respectively. For animals (parents) with progeny records but
without their own individual record (e.g. animals 1 and 2), BLUP of
direct BV (d,) for growth is derived through records on their
respective relatives and adjustment for mates, d;. Individual
direct BV is also adjusted based on the relationship between direct
and maternal components (presumably between growth and milk
production), my (relatives and mates), and m, (individual maternal
BV). In this case, the formula for direct BV prediction is as
follows (Note: The a'!, a4, a® and a'® values are from the A~
matrix, whereas the a'la;(a,, or a,), ala, («,, or €z), a'fay,(a5,),
aay; (@,,) and a**a,, values are from the coefficient matrix.):

Q3o

3] - (e

attayy L3 1271
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Direct BV for animals (parents) with information of their own
individual record and alsc progeny records (e.g. animals 3 and 4)
would have the prediction formula as given:

g 1 5 2 A L2T1 .
] i - (e
@32 R 1+a'Pe,, . atle,, )
B (‘*—“—‘—ngiaijmj) - (my ) - ) (my )
1+atiay, 1+atiay 1+aile,, [28]

The formula for maternal BV for base animals or male parents (e.g.
animals 1 and 3):

&2

Mol - (e - (S

atys [29]

Maternal BV prediction for female parents with progeny records (k):

m, = ' { - y8; - b(lsw, — Isw) - & - fa2 allng |
my (_.__. LI %« 1 (18w, ) = Pelitrer (_._____)(j);i nj)
k+alia,, o kt+atte,, '
2y, A . atla,, -
) - (e ] - )
kt+alle,, k+ale,, ktatia,, [(30]

The EPA values for does 2 and 4 would be calculated from .52\11 + m,,
which yields 3.60 and 8.50 g, respectively. The permanent
environmental (pe) effect does not enter into the EPA formula since
this effect was not associated with the dam as in this example. In
the last equation, the pe effect would consider the litter (not the
dam) for the k™ progeny record, in other words.

For animals (progeny) with individual records (first line) the
direct BV formula (the second line is the direct BV contribution of
parents, S and D; the third line is the adjustment for maternal BV
relationship):

A 1 A A eom—— ~
a = (______) ( y1 - y8, - b(lsw, - Tow) - peysreer )
| 1+attay,
1 -~ A
- (______ (a*ayy, [ dg 1 + a'Pay; (4, 1)
1+a.11¢11
1 n ~ A
- (___) ([afa;, (mg)] + [1+a®fe;, (my)] + [allay, (my)] )
1+allay, A [31]
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Lastly, for animals (progeny) with individual records the maternal
BV formula is shown (maternal BV being based on records from dams
with progeny records):

N - - %12 A A o
m = .5 (mg+my) - ___ ( = .5dg - .5dy + d, )

- T%) [32]

Of interest, the -.87 genetic correlation between direct and
maternal genetic effects for approximate 70-day body weight as
reported by Lukefahr et al. (1992b), is in contrast to the positive
genetic correlation of 1.00 for the same character involving 1,731
fryers as documented by Ferraz et al. (1992a). Earlier reports
(Rollins and Casady, 1960; Harvey et al., 1961, Rollins et al.,
1963) implicated an additive genetic by general maternal effects
covariance affecting 56-day market weights in New Zealand White
rabbits. Obviously, more research in this area is urgently needed
to incorporate unbiased genetic and environmental parameters into
MME for accurate BV prediction. If an unreasonable genetic
covariance is derived from an iterative REML solution, however,
then it may be best to not include this biased parameter in the MME
(assume independent animal and dam effects) until a reasonable
estimate is obtained later (Benyshek et al., 1988). Should a strong
genetic antagonism actually exist, then selection for one or the
other genetic components of a trait (Van Vlieck, 1970), or selection
within those populations for seemingly rare individuals with
highest ranking positive direct and maternal BV’s would be
plausible approaches. Development of specialized dam and sire lines
is another option (Moav, 1966; Dickerson, 1969), and usage of a
restricted selection index is still another (Kempthorne and
Nordskog, 1959; Xu and Muir, 1992).

Reduced Animal Model for a Maternally Influenced Trait. The
reduced animal model (RAM) has become popular in recent years
because of the computational efficiency advantage over obtaining
solutions under a full animal model. In other words, the number of
equations needed involve only those associated with fixed effects
(year-season and litter size) and random parent and litter effects
from the previous problem. Especially applicable to rabbits where
progeny numbers may greatly exceed the number of parents, the RAM
approach is appealing because of the reduction in computational
requirements. Observations of progeny (non-parents) are basically
absorbed into the equations for parents. BV solutions (direct and
maternal) for progeny can be computed from a RAM analysis using
straightforward back-solution procedures.

The RAM method has been extended for analysis of traits
influenced by maternal effects, such as weaning weight in beef
cattle (Benyshek et al., 1988; Johnson et al., 1992). For
postweaning performance traits in swine, Hudson (1984) and Hudson
and Kennedy (1985) developed a RAM procedure to predict BV,
although an additive genetic model was assumed in both papers. Van
Vleck (1990b) outlined procedures for performing a RAM analysis for
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traits affected by direct and maternal genetic, covariance between
direct and maternal genetic and permanent environmental effects.

Using the same previous data set with 4 parents (p = 1, 2, 3
and 4) and 7 non-parents (n=5, 6, 7, 8, 9, 10 and 11) as analyzed
under a full animal model, the MME for a RAM analysis (adapted from
Quaas and Pollak [1980] and Benyshek et al., [1988]):

[x'pxp+x',,nx,, X' % + iX' R%," X% + X' R& X' %3 + X' R%y

l 2 ,%; + $% 'RE,"+ A4y, E,%; + 38 "RZ+ Al ey, % .8 + 3% 'RZ,"

l Symetric z’ 222 + z 2*Rz2 + A.lmazz z’ 223 + z' 2*RZ3*
| %' 3%; + %' 3'RE;+ X, |
B X ¥, + X', RY, |
. d, %' .Y, + 4% 'RY,
m, £ .Y, + Z',°RY,
| pe, %Y, + 2';°RY, [33]

For this RAM analysis, there are 16 rather than 30 equations
(2 fixed ys classes, 1 fixed covariate (lsw), 4 random direct and
4 random maternal genetic effects for parents, and 5 random
permanent environmental effects for litters). For clarity, a series

of matrices that are incorporated into the above RAM equations are
as follows (Equation 34):

Bpp
X bt X ¥,
1.000 .500 .750 .250
000 0 01-1 2256 .500 1.000 .750 - .500
000 0 01 -1 1936 .750  .750 1.250 .375
100 2139 01 1 1977 .250  .500 .375 1.000
102 1781 01 1 1843
01 0 2192 N,
01 0 2123
01 -2 1855 1.833 -.167 -1.000  .000

-.167 2.167 -1.000 -~.667
-1.000 -1.000 2.000 .000
.000 -.667 .000 1.333

The Z,, 2%,", 2., 2Z,", Z, and %," matrices pertain to direct,
maternal and litter random effects for parents and non-parents(*) ’
respectively (Equation 35).

Z 3 Z, Z," 2, zZ5°
0000 1001 0000 0001 00000 01000
0000 1001 0000 0001 00000 01000
0010 0011 0100 0001 10000 00100
0001 0011 0100 0001 00000 00100
0110 0100 00010
0110 0100 00010
1100 0100 00001
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The %, (p x p) and 2, (n x p) matrices contain pedigree codes
(sire and dam) for the 4 parents (p) and 7 nonparents (n); %; (p X
p) and %,” (n x p) matrices relate parents and nonparents to known
dams (2 and 4), and Z; (p x 1) and Z;” (n x 1) matrices relate
parents and nonparents to the 5 contemporary litters (1),
respectively. In the case of the RAM, parent and nonparent matrices
are subsets (inclusive of only parent or litter columns with parent
or nonparent rows) of matrices %,, %, and %; as found for the full
AM, as illustrated in the previous example. Likewise, the same &«
values are used for either a full AM or a RAM (Equation 25).

The R matrix (within-animal residual structure) is an identity
matrix with zero off-diagonal elements and diagonal elements
corresponding to the following formula for R,, which is calculated
separately for each nonparent with a body weight record:

1
Rn=

1 + Dy(ay™) [36]

where D, is 3 if both parents are known and non-inbred, % if only
one parent is known and non-inbred, or if one or both of known
parents are inbred than D, equals 1/[2/(1 -~ f)] where f is the
average of the inbreeding coefficients of the parents. Only one
parent, 3, was inbred (F; = .25) in this example. If nonparents
(progeny) are assumed to be non-inbred then D, is simply % or %,
which improves computational ease (D, for nonparents 5, 6 and 11 =
.5 (parents non-inbred) and for nonparents 7, 8, 9 and 10 = .4375
(sire is inbred but not the dam). The «, is the ratio: ¢?,/c¢?, =

1.875. The R identity matrix for the 7 nonparents used in the RAM
analysis is therefore:

[ .7894737 ..0000000 .0000000 .0000000 .000C0000 .0000000 .0000000 ]
.0000000 .7894737 .0000000 .0000000 .0000000 .0000000 .0000000
.0000000 .0000000 .8108108 .0000000 .0000000 .0000000 .0000000
.0000000 .0000C000 .0000000 .8108108 .0000000 .0O000000 .0000000 |

. .0000000 ' .0000Q00 .0000C00 .0000000 .8108108 .0000000 .0000000 |
.0000000 .0000000 .0000000 .0000000 .0000000 .8108108 .0000000 |
.0000000 .0000000 .0000000 .0000000 .0000000 .0000000 .7894737 |

e e . e

[37]

The completed RAM mixed model coefficient matrix and solution
vector are shown for convenience as subset matrices (Equation 38):

X' X, + X' RX, X' % + iX' RZ," X %, + X' RZ,"

2.000 . 000 2.000 .000 .000 1.000 1.000 .000 2.000 .000 . 000
.000 5.612 -1.536 1.184 1.206 1.622 1.600 .000 2.411 .000 3.201
2.000 -1.536 10.358 -1.579 -.789  .811 2.021 .000 .421 .000 .043
X' By + X' RE;" X' ¥, + X' RY, B

1.000 .000 .000 .000 .000 3920.000 1988.573

.000 1.579 1.622 1.622 .789 11369.890 1989.629

.000 ~1.579 1.622 .000 -1.57% 420.880 ~-47.240
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2,8, + 12',"R%," + A7 ay, 2,3, + 32 'RZ," + A7 4y,
14.029 '-1.024 -7.329 .395 5.000 -.060 -2.727 .789
-1.024 16.482 -6.924 -4.886 -.455 7.114 -2.727 -1.818
-7.329 -6.924 16.46% .405 -2.727 -.916 5.454 .811
.395 -4.886 .405 11.572 .000 -.818 .000 5.236
2 ,%, + 42’ ,"R%," %Y, + % 'RY, d,
.000 .789 .000 .000 .395 2386.974 11.305
.000 .000 .000 .811 .395 2481.561 6.475
1.000 .000 .811 .811 .000 5436.973 50.829
.000 .789 .811 .000 .000 4984.386 -14.543
2’ 2%, + Z'RE;" + Al ag, 2’ ,%, + %' 'R%;" z’ Y, + Z'"RY, m,
2.501 -.227 -1.364 .000 .000 .000 .0DO .000 .000 .000 -15.950
-.227 7.366 -1.364 -.909 1.000 .000 .0D0 1.622 .789 8883.122 .358
-1.364 -1.364 2.728 .000 .000 .000 .000 .000 .000 .000 -91.643
.000 -.909 .000 5.01%9 .000 1.579 1.622 .000 .000  6406.771 15.771
£’ ,%; + 2’ ;°RS," + Iaa, z’ .Y, + % ;'RY, pe,
300.726 0 0 0 0 2139.000 .330
0 301.305 0 ) 0 3309.474 .236
0 0 301.348 0 0 3097.297 -.357
0 0 o 301.348 0O 3498.649 .747
0 0 0 o 300.516 1464.474 -.626

The above mixed model coefficient matrix with solution sub-
vectors for parents and litters serve only as a guide for proofing
because of the rounding to only three decimal places. The DFREML
package yields solutions only under a full individual AM, so for a
RAM analysis the equations can be constructed (including inversion
of the coefficient matrix) and solved using SAS (1985) or a
spreadsheet computer program with matrix algebra capabilities.

Estimation of nonparent direct BV from back-solutions is based
on an understanding of the following linear relationship:

Y, = .5dg + .54, + ¢, + €, [39]

where y is the observation of the n™ nonparent which is a function
of the average gamete contribution of its parents (i.e. midparent
direct BV), ¢ represents Mendelian sampling apart from midparent
BV, and e is the nonparent’s environmental deviation from its own
observation, y (inclusive of year-season, litter size, maternal,
litter and residual effects in this example). Thus, direct BV is
conceptually derived by both a midparental contribution plus a
Mendelian sampling contribution, ergeo a gametic model (Quaas and
Pollak, 1980; Hudson, 1984).
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Back-solutions for nonparent direct and maternal BV

prediction, presumably for growth and milk (adapted after Benyshek
et al., 1988):

EP,>

= .5 (dg + dy)

1 ~ -~ r—— ~ A A A
Ll [ ( Yo -~ ¥Y8; - b(lsw, — 18W) - Dejjtrer = My - -5dg — .5dp )

1+ a,(Dy)~?

- . N oy - A A
m, = .5 (mg+my) + _ (d, - .5d5 - .5dy )
ay [40]
Nonparent back-solution values are the same as those BV’s

listed with the tabulated data from the preceding full AM problem.

All terms are as previously defined, except a, which is the ratio:
0% /0, = -.9375.

Lastly, a recursive procedure to generate nonparent direct and
maternal BV’s can be computed using the equations as follows
(modified after Van Vleck [1990b}):

~

[ ¥, - ¥8, - b(lsw, ~ Tew) - i‘-‘euttar - my
+ @y (D)7 Qg + dpy 1/2 + (D) mg + my )/2 | {
|
|

—

E &

[“n ®q2 }
]

A o

|
l L £31 Gzz* I ~ N " R
| a@y2(Dy)72( d5 + dp )/2 + ag(Dy)Y( mg + my )/2 a1y

where (D,)™ is the inverse of D of the n* nonparent (e.g. (D)
(+5)7* = 2.0000 for nonparents 5, 6 and 11, and (D,)™ = (.4375)
2.2857 for nonparents 7, 8, 9 and 10. The «a,;, «;, and a,, values are
identical to those found in Equation 25. The «,,", &;," and «,," values

would be computed based on individual nonparent D, and population
a values, written as:

ol

‘[ 1+ (D,,)"lan (D,) ay, }4 I[ oy 7%y ]l
L (Dn)-]'“zi (Dy) az, ] | @y ay | [42]
where a,", a;" (@, = @5") and &, values of .2103, -.4205 and

1.2073 apply to nonparents 5, 6 and 11; whereas, corresponding

values of .1890, -.3779 and 1.0763 apply to nonparents 7, 8, 9 and
10, respectively.

According to Hudson and Kennedy (1985), recent nonparents are
of interest for estimation of herd genetic value, within herd
genetic trend and for current selection decisions.
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Other Special Topics and Conclusions

Several animal model types appropriate for mixed-model
analyses for single-trait evaluation have been presented and
discussed in this paper with numerical examples and using various
statistical packages. Extension to a multiple-trait, mixed-model
procedure has several appealing features for rabbit genetic
evaluations beyond more efficient selection. For example, data
consisting of correlated growth and carcass traits, growth and
reproductive traits, wool quantity and quality traits, and between
a trait measured in both sexes and a trait that is sex-limited, can
be analyzed using a multiple trait model. This procedure has the
advantages, in particular, that records on all animals are not
required (because of trait correlations and relationships among
animals), and adjustment is made for the effects of sequential
selection/culling bias (Henderson and Quaas, 1976; Quaas and
Pollak, 1980; Boldman et al., 1992).

The animal model procedure is alspo useful in determination of
genetic, environmental and phenotypic trends or progress realized
over several years (Henderson et al., 1959; Henderson, 1973;
Schaeffer, 1974). This is possible when there is overlapping of
generations in a population, whereby genetic ties exist due to
certain animals that produce offspring over several generations. Of
course, with artificial insemination this procedure is more easily
facilitated. The weighted average of predicted breeding values is
calculated on a within birth-year basis and then is regressed on
birth year. Genetic trends for rabbit populations have previously
been reported by Estany et al., 1988b, 1989; Baselga et al., 1992;
Ferraz et al., 1992a; Rochambeau et al., 1992; Utrillas et al.,
1992). Moreover, mixed animal models apply, as well, to
crossbreeding (Fimland, 1975; Elzo and Famula, 1985; Komender and
Hoeschele,: 1989) and in selection experiments (Sorensen and
Kennedy, 1984; Estany et al.,, 1989; Lamberson et al., 1991),
whereby crossbreeding and selection parameters may be more
accurately estimated and with improved precision.

Adoption of animal model techniques is not only presently
feasible but is most appropriate for rabbit within-herd genetic
evaluations for economic traits to maximize selection efficacy. As
artificial insemination becomes more cost-effective, and later
embryo transfer, it would be possible to produce sufficient genetic
ties across herds. Hence, usage of multiple-herd sires and dams in
cross~referencing programs could serve as a basis for selection
from national, and with time global gene pools (Banos and Smith,
1991). Multibreed sire and dam evaluations are another prospect
that would provide a basis for judicious selection of new breeds
utilized in different environments. Preliminary research could test
for breed and individual sire interactions across divergent
environments (e.g. temperate and tropical) prior to global exchange

of germplasm. Concurrently, conservation programs must be
maintained. -
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On a within-country basis, a standardized system for genetic
evaluations would need to be well defined initially. This would
involve proper animal identification, collection and reporting
procedures for major economic traits, and evaluation methodologies
which utilize an animal model(s). Periodic summaries of qualifying
sires and dams with EPD or probable breeding value (PBV) and
associative repeatability information could be prepared and made
available to commercial producers by breeding companies, test
stations and seedstock suppliers which possess the genetic stocks.
In addition, information on within-herd genetic progress, as well
as herd-year-season environmental trends, could be furnished to
progressive producers as a managerial tool. In only a limited

number of countries, similar, albeit less ambitious, efforts may
already be taking place.

Ideally, national rabbit genetic evaluation programs should
first be formally established, and eventually extend to a global
evaluation program. The World Rabbit Science Association could
serve a leadership role in the design, implementation, monitoring
and evaluation of this prospective rabbit genetic improvement

proposition whereby state-of-the-art animal model applications
would be highlighted. ‘

In conclusion, commercial and subsistence producers would be
the ultimate beneficiaries (not to mention consumers of rabbit
meat) from the enhanced genetic merit achieved indirectly by
utilization of the animal model innovation. Moreover, breeder
reputation, profitability and nutritional quality of the human diet
as associated with the genetic improvement would be enhanced.
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